厌氧选择性脱氮除硫的调控影响因素研究及微生物群落结构分析
本文选题:电子受体 + N/S ; 参考:《西安建筑科技大学》2015年硕士论文
【摘要】:本文主要针对厌氧脱氮除硫工艺中,以降低硫化物和NO3-的出水浓度及提高单质硫和氮气的转化率为目标,主要研究了N/S、停留时间、电子受体类型、硫化物负荷和进水p H等调节因子对厌氧选择性脱氮除硫的影响,得出厌氧选择性脱氮除硫的调控条件。主要结论如下:(1)以NO3-为电子受体,去除硫化物最佳N/S 0.67,去除NO3-最佳N/S比为0.5~1.0,最佳产单质硫N/S为0.5,可见控制N/S为0.5~1.0可实现同步脱氮除硫;以NO2-为电子受体,去除硫化物最佳N/S为0.67,去除NO2-最佳N/S为0.2~1.0,去除率均达99%以上,脱氮不受抑制,NO2-的去除率高于NO3-的去除率,表明硫化物可以快速去除NO2-,是亚硝酸盐体系反硝化脱氮的适宜电子供体。(2)以NO3-为电子受体,水力停留时间24h,N/S为0.5选择性生成单质硫达24%,选择性生成硫酸盐为30%,选择性生成氮气N/S为1.0,产氮气量达58m L。以NO2-为电子受体,水力停留时间24h,N/S为0.67选择性生成单质硫达11.01%,选择性生成硫酸盐为53.58%,选择性生成氮气N/S值为2.0,产氮气量达74m L。表明电子受体对单质硫的选择性更明显,以NO3-为电子受体产生的单质硫高于以NO2-为电子受体。亚硝酸盐体系氮气产生规律与硝酸盐体系明显不同,表明二者转化途径可能不同,NO3-主要通过自养反硝化脱氮过程去除,而NO2-主要通过厌氧氨氧化、异养反硝化等作用去除。(3)当N/S为1.0~2.0条件下,进水硫化物浓度在150~350mg/L时,水力停留时间24h,出水硫化物浓度均小于4.2mg/L,去除率高达98%,当进水硫化物提高到400mg/L时,脱硫受到抑制。当N/S为0.5~0.67,进水硫化物浓度150~250mg/L,水力停留时间24h,出水NO3-浓度小于14mg/L,去除率均大于70%,进水硫化物浓度提高到300mg/L,脱氮受到抑制。表明提高硫化物负荷,进水硫化物浓度高于250mg/L时脱氮受到抑制,而进水硫化物浓度高于350mg/L时脱硫才受到抑制。(4)在进水硫化物浓度为250~400mg/L,N/S为1.0条件下,选择性生成单质硫最高达33.2%,选择性生成硫酸盐为36.04%,表明提高硫化物负荷有利于选择性生成单质硫。进水硫化物浓度为150~300mg/L,N/S为0.5条件下,选择性生成氮气最高达64m L,表明提高硫化物负荷,高N/S并不利于选择性生成氮气。(5)当进水硫化物浓度为200mg/L,水力停留时间24h,去除硫化物最佳进水p H=7.5~8.0,去除NO3-最佳进水p H=8.5~9.0。当进水硫化物浓度为300mg/L,水力停留时间48h,去除硫化物最佳进水p H=7.5~9.0,去除NO3-最佳进水p H=8.5~9.0。(6)对于不同硫化物负荷系统,最佳选择性生成单质硫进水p H=7.5~8.0,选择性生成单质硫最高达30%,对应选择性生成硫酸盐为10.21%。选择性生成氮气最佳进水p H=8.5~9.0,水力停留24h,产氮气量最大达60m L。(7)反应器内以形成Sulfurovum、Kluyvera为主的脱硫、脱氮功能微生物;反应器内优势菌种数量随着进水p H值的升高而减少,同时提高进水硫化物浓度和进水p H值,反应器群落多样性减小。
[Abstract]:In order to reduce the effluent concentration of sulfides and NO3- and increase the conversion of sulfur and nitrogen, the N / S, residence time and electron receptor type were studied in this paper. The influence of sulfide loading and influent pH on anaerobic selective denitrification and sulfur removal was studied and the control conditions of anaerobic selective nitrogen and sulfur removal were obtained. The main conclusions are as follows: (1) with no _ 3- as the electron receptor, the best N / S _ (0.67), the best N / S / S ratio and the N / S ratio are 0.5 ~ 1.0 and 0.5 respectively. It can be seen that the nitrogen and sulfur removal can be achieved by controlling N / S as 0.5 ~ (1.0), and no _ 2- as an electron receptor. The best N / S ratio for sulfides removal was 0.67, and the best N / S removal rate for no _ 2-N _ 2- was 0.2n ~ (-1), and the removal rates were all above 99%. The removal rate of no _ 2-- was higher than that of no _ 3-, and the removal rate of no _ 2- was higher than that of no _ 3-. The results show that sulfide can remove no _ 2-rapidly and is the suitable electron donor for denitrification and denitrification in nitrite system. The HRT was 0.5 h ~ (-1) to form sulfur, 30% sulfate, 1.0% N ~ (2 +), and 58 m / L N ~ (2 +), respectively. With no _ 2- as the electron acceptor, HRT = 0.67 N / S = 0.67 to form elemental sulfur, 53.58 sulfates, 2.0 N / S, and 74 mL N / L, selective formation of sulfate, N / S and N ~ (2 +), N _ (2 / S) and N ~ (2 +), N _ (2 / S) and N ~ (2 +) N / S = 0.67, respectively. The results showed that the selectivity of electron receptors to elemental sulfur was more obvious than that of no _ 3- as electron receptors. The pattern of nitrogen production in nitrite system is obviously different from that in nitrate system, which indicates that the two transformation pathways may be different from each other, and no _ 2- may be removed mainly by autotrophic denitrification, while no _ 2- is mainly oxidized by anaerobic ammonia. Heterotrophic denitrification removal. 3) when N / S is 1.0 ~ (2.0), when the influent sulfide concentration is in 150~350mg/L, the HRT is 24 h, the effluent sulfide concentration is less than 4.2 mg / L, the removal rate is as high as 98%. When the influent sulfide is increased to 400mg/L, the desulfurization is inhibited. When N / S is 0.5 ~ 0.67, influent sulfide concentration is 150 ~ 250 mg / L, HRT is 24 h, effluent NO3- concentration is less than 14 mg / L, removal rate is more than 70%, influent sulfide concentration is increased to 300 mg / L, denitrification is inhibited. The results show that when sulphide concentration in influent is higher than 250mg/L, denitrification is inhibited when sulphide concentration is higher than 350mg/L, and desulfurization is inhibited only when influent sulfide concentration is higher than 350mg/L. The selective formation of elemental sulfur is up to 33.2 and the selective formation of sulphate is 36.04, which indicates that increasing the sulphide load is beneficial to the selective formation of elemental sulfur. When the influent sulfides concentration is 150 ~ 300mg / L ~ (-1) N / S = 0.5, the highest selective nitrogen generation is 64 mL, which indicates that the sulphide load is increased. When the influent sulfide concentration is 200 mg / L, the HRT is 24 h, the best influent water pH is 7.5% 8.0 and no 3- is 8.5% 9. 0 when the influent sulfide concentration is 200 mg / L and the hydraulic retention time is 24 h, the high N / S is not suitable for the selective formation of nitrogen gas. When the influent sulfide concentration is 300 mg / L, the HRT is 48 h, the best influent water for removing sulfides is 7.5U 9.0, and the best influent no _ 3- is 8.5 mg / L, 9.0.60) for different sulfides loading systems, The optimum selectivity for the formation of elemental sulfur in influent was 7.5 ~ 8.0, and the maximum of selective formation of elemental sulfur was 30. The corresponding selective formation of sulphate was 10.21. The optimum influent pH of selective nitrogen production was 8.5c9.0, the hydraulic retention was 24h, and the maximum nitrogen and gas production was 60m 路L ~ (7)) in the reactor, the desulfurization and denitrification function of Sulfurovum Kluyvera was formed, and the number of dominant bacteria in the reactor decreased with the increase of influent pH value. At the same time, the diversity of reactor community was reduced by increasing influent sulfide concentration and influent pH value.
【学位授予单位】:西安建筑科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X703
【相似文献】
相关期刊论文 前10条
1 刘军,王斌,潘登,李泗清,汪苹;好氧脱氮过程中脱氮途径的初探[J];工业水处理;2003年11期
2 吴韩;汤兵;;移动床生物膜反应器脱氮除磷研究进展[J];广东化工;2011年04期
3 廖德祥,李小明,曾光明,杨国靖,谢珊,吴永明;全程自养脱氮新工艺[J];中国给水排水;2004年04期
4 潘登,刘军,王斌,汪苹;废水处理中的非传统脱氮途径[J];城市环境与城市生态;2003年06期
5 王华;王京伟;杜刚;;养殖水体中微生物全程自养脱氮初步研究[J];水产科学;2010年05期
6 HansJürgenGrabke;江先雄;;铁在气氛中渗碳、脱碳及氮化、脱氮时其表面反应的动力学和机理[J];国外金属热处理;1990年01期
7 杨国靖;史兴;周吉娜;楼佩芸;钟琳伟;唐佳;;同步脱氮除磷好氧颗粒污泥的特性及其反应过程[J];浙江万里学院学报;2009年02期
8 王景峰;金敏;谌志强;邱志刚;张斌;孔庆鑫;李君文;;1株好氧脱氮菌的筛选与脱氮特性研究[J];环境科学;2011年08期
9 占天刚;王晓昌;袁宏林;金鹏康;;生物造粒流化床脱氮除磷研究[J];水处理技术;2007年03期
10 杨超;陈红梅;龙腾锐;郭劲松;;以羟胺为底物的自养脱氮微量热研究[J];环境工程学报;2012年04期
相关会议论文 前3条
1 冯丽娟;徐剑;朱亮;徐向阳;陈云龙;;植物生物质强化污染水源水生物膜修复工艺脱氮及农药类环境激素去除[A];2012中国环境科学学会学术年会论文集(第三卷)[C];2012年
2 陈兆平;陈建斌;黄宗泽;;不锈钢冶炼过程中吸氮和脱氮的动力学模型及应用[A];2006中国金属学会青年学术年会会刊[C];2006年
3 陈兆平;陈建斌;黄宗泽;;不锈钢冶炼过程中吸氮和脱氮的动力学模型及应用[A];2006中国金属学会青年学术年会论文集[C];2006年
相关博士学位论文 前2条
1 姜欣欣;基于A/O/A运行模式的SBR工艺脱氮除磷效能及其微生物特性研究[D];哈尔滨工业大学;2011年
2 陈永志;A~2/O-BAF系统深度脱氮除磷[D];北京工业大学;2012年
相关硕士学位论文 前10条
1 刘攀龙;河流脱氮微生物的筛选及脱氮特性研究[D];郑州大学;2015年
2 路雪婷;生物反歧化脱氮工艺研究[D];陕西科技大学;2015年
3 阮泳馨;厌氧选择性脱氮除硫的调控影响因素研究及微生物群落结构分析[D];西安建筑科技大学;2015年
4 李海云;脱氮微生物制剂的研制[D];山西大学;2004年
5 谢继慈;营养浓度对单级好氧生物脱氮除磷的影响研究[D];湖南大学;2014年
6 张晓昕;好氧颗粒污泥的形成及其同步脱氮除磷效能研究[D];哈尔滨工业大学;2011年
7 韩永和;脱氮除磷微生物的分离鉴定及与植物联合处理含氮磷废水的研究[D];福建师范大学;2013年
8 吴健;A-A-O-MBR组合工艺对餐厨废水深度脱氮的应用研究[D];江南大学;2014年
9 魏清娟;低温脱氮菌剂的制备及其强化人工湿地脱氮效能研究[D];哈尔滨工业大学;2015年
10 罗富金;螺旋升流式反应器脱氮 除磷效果及污泥特性的试验研究[D];重庆大学;2004年
,本文编号:1788409
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1788409.html