一株高效脱氮好氧适盐菌Photobacterium sp.LP的筛选及生物特性研究
本文选题:好氧同化性硝酸盐还原适盐菌 + Photobacterium ; 参考:《山东大学》2015年硕士论文
【摘要】:好氧同化性硝酸盐还原适盐菌Photobacterium sp.LP,能在好氧条件下,高效的去除高盐度有机废水中的氮,同时可高效去去除COD、磷。从而只需一个反应器便可进行系统运行,这有利于节省工程基建和能耗费用。Photobacterium sp.LP是南海菌株503-4中不明原因混入的杂菌,经筛选分离提纯后进行菌种鉴定初步确定为发光杆菌属。Photobacterium sp.LP的最佳除氮条件为:盐度3%、C/NNH4+=13、C/NNO3-=9、pH=7.69、温度25℃-30℃,DO=7.10mg/L,细菌在初始TN、TP和CODcr分别为109.27mg/L,242.68mg/L,1639.28mg/L的硝酸盐培养基中,TN、TP和CODcr的最高去除总量分别达到108.24mg/L,32.21mg/L, 1543mg/L;细菌在初始TN、TP和CODcr分别为119.39mg/L,238.44mg/L,1729.16mg/L的铵盐培养基中,TN、TP和CODCr的最高去除总量分别达到119.31mg/L,34.09mg/L,1707.57mg/L;通过细菌生物氮载量的实验发现Photobacterium sp.LP对数期的生物氮载量比较高,在硝酸培养基与铵盐培养基中分别可达到85.29 mg/g和103.42 mg/g,可考虑将该细菌的活性污泥处理后作为生物肥料以回收废水中的氮、磷等。通过铵盐培养基、硝酸盐培养基和铵盐与硝酸盐混合培养基中氮形态的转化实验证明:(1)一定浓度的铵盐会完全抑制Photobacterium sp.LP的亚硝酸盐还原作用,抑制但不完全抑制硝酸盐还原;(2)在整个过程中几乎没有含氮气体的产生,(1)(2)两点证明该细菌为同化性硝酸盐还原菌;3. Photobacterium sp.LP对铵盐的去除是完全基于铵盐同化作用,该细菌不具有硝化作用通过硝酸盐还原酶活性试验,得出了以下结论:Photobacterium sp.LP的某硝酸盐还原酶与和该酶相关的对硝酸起还原作用的物质位于细胞膜上,为非水解性物质,该硝酸盐还原酶的活性受到温度的影响;Photobacterium sp.LP细胞超声破碎上清液中不含与NADH, NADPH, reduced methyl viologen有关的硝酸盐还原酶,不含对硝酸起还原作用的物质或不含与其相关的硝酸盐还原酶酶或两者都不含有。文中提到的烫海带锅炉提碘废水来自中国山东威海荣成寻山渔业公司,是一种盐度≈4.7%,C/N≈20, pH≈2.1的酸性有机废水,其主要污染物为NH4+、NO2-、N03-、有机氮、COD、磷,而Photobacterium sp.LP是一株适盐菌,可以耐受较高的盐度和C/N(在盐度1.5%到5%的模拟废水中总氮去除率都可达89.52%以上,在C/N=21时,模拟废水总氮去除率可达85.93%),并且可同步高效去除COD和总磷,文中生物膜反应器采用的中空纤维膜具有高效截留Photobacterium sp.LP的作用,使反应器中的细菌不会进入出水,本文先将烫海带锅炉提碘废水进行中和和投加磷预处理后接种Photobacterium sp.LP进行了摇瓶试验,发现可将废水处理至TN、TP达到国家综合污水排放一级标准,CODCr达到国家综合污水排放二级标准,将细菌Photobacterium sp.LP投加到使用中空纤维膜组件的膜生物反应器中,运用单菌膜生物反应器处理上述预处理后废水的模拟废水,反应器长期运行较为良好,稳定运行期间可去除大部分污染物,部分运行时间TN、TP、NH4+达到国家综合污水排放一级标准,CODcr达到国家综合污水排放二级标准,但是由于单菌沉降性差,在反应器实验中的排泥含水量过高且膜清洗与更换较为频繁,造成成本过高等问题而无法投入到实际运用当中。
[Abstract]:The aerobic assimilative nitrate reduction bacteria Photobacterium sp.LP can effectively remove the nitrogen in the high salinity organic wastewater under aerobic conditions, and effectively remove COD and phosphorus, so that only one reactor can be used for system operation, which is beneficial to save engineering construction and energy consumption.Photobacterium sp.LP is the South China Sea strain 503-4 After screening and purification of mixed bacteria, the best nitrogen removal conditions for.Photobacterium sp.LP were identified as: salinity 3%, C/NNH4+=13, C/NNO3-=9, pH=7.69, temperature 25, -30, DO=7.10mg/L, bacteria in initial TN, TP and CODcr respectively for 109.27mg/L, 242.68mg/L, nitric acid. The maximum total removal of TN, TP and CODcr in the salt medium reached 108.24mg/L, 32.21mg/L, and 1543mg/L, respectively, in the initial TN, TP and CODcr respectively of 119.39mg/L, 238.44mg/L, and 1729.16mg/L. It is found that the biological nitrogen load of Photobacterium sp.LP is higher in logarithmic phase, and can reach 85.29 mg/g and 103.42 mg/g respectively in the medium of nitrate and ammonium salt. The active sludge of the bacteria can be considered as a biological fertilizer to recover nitrogen and phosphorus from the wastewater. The transformation experiment of nitrogen form in the salt mixed medium proved that (1) the ammonium salt of a certain concentration could completely inhibit the nitrite reduction of Photobacterium sp.LP, inhibit but not completely inhibit the nitrate reduction; (2) there was almost no nitrogen containing gas in the whole process, and (1) (2) two points proved that the bacteria was an assimilative nitrate reducing bacteria; 3 The removal of ammonium salt by Photobacterium sp.LP is entirely based on ammonium salt assimilation. The bacteria does not have nitrification through nitrate reductase activity test. The following conclusion is drawn: the substance of a nitrate reductase of Photobacterium sp.LP with the enzyme associated with the enzyme is located on the cell membrane and is non hydrolytic. Substance, the activity of the nitrate reductase is affected by the temperature; the Photobacterium sp.LP cell ultrasonic breakup supernatant contains no nitrate reductase related to NADH, NADPH, reduced methyl viologen, and does not contain any substance that is reduced to nitric acid or contains no related nitrate reductase or both. The iodine wastewater from the scalding kelp boiler comes from the Rongcheng Weihai Rongcheng fishing company in Rongcheng, Shandong, China. It is a kind of acid organic wastewater with salinity 4.7%, 20, and 2.1. The main pollutants are NH4+, NO2-, N03-, organic nitrogen, COD, phosphorus, while Photobacterium sp.LP is a strain of salt and can tolerate high salinity and C/N (from 1.5% to 5% in salinity). The total nitrogen removal rate in the simulated wastewater can reach more than 89.52%. At C/N=21, the total nitrogen removal rate of simulated wastewater can reach 85.93%), and the removal of COD and total phosphorus can be effectively removed. The hollow fiber membrane used in the biofilm reactor has the effect of efficient interception of Photobacterium sp.LP, so that the bacteria in the reactor will not enter the effluent. This article will first be ironed in this paper. The iodine wastewater of the kelp boiler was inoculated with Photobacterium sp.LP after neutralization and phosphorous pretreatment to carry out the shaking flask test. It was found that the wastewater could be treated to TN and TP reached the first grade standard of national comprehensive sewage discharge. CODCr reached the two level standard of national comprehensive sewage discharge, and the bacterial Photobacterium sp.LP was added to the hollow fiber membrane module. In the membrane bioreactor, a single membrane bioreactor is used to treat the simulated wastewater of the pretreated wastewater. The reactor has a good long-term operation. During the stable operation, most of the pollutants can be removed. Part of the operation time TN, TP, NH4+ reach the first level standard of national comprehensive sewage discharge, and CODcr reaches the two level standard of national comprehensive sewage discharge. However, due to the poor settlement of mono bacteria, the water content of the sludge in the reactor experiment is too high and the membrane cleaning and replacement is more frequent, which causes the problem of excessive cost and can not be put into practice.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X172;X703
【相似文献】
中国期刊全文数据库 前10条
1 李云华;动物舌表硝酸盐还原微生物及其还原活性的研究[J];思茅师范高等专科学校学报;1999年04期
2 张加春,李红,何斌,王权飞,番安静,姚政;大白鼠舌表硝酸盐还原菌研究[J];云南大学学报(自然科学版);1998年S4期
3 王亚南,王保军,戴欣,焦念志,彭志英,刘双江;海水养殖场沉积物中硝酸盐还原菌种群分析[J];微生物学通报;2004年06期
4 谭燕;程杰成;屈睿;吴晓磊;;油井采出液中硝酸盐还原菌的分离培养及对硫酸盐还原的抑制[J];应用与环境生物学报;2007年03期
5 张伟;刘同旭;李芳柏;李晓敏;;铁还原菌介导的氧化铁还原与硝酸盐还原的竞争效应研究[J];生态环境学报;2013年01期
6 江利梅;陈杏娟;马连营;孙国萍;许玫英;;硝酸盐还原促进毒害性有机污染物降解的研究进展[J];微生物学通报;2014年08期
7 周晓云,王克荣;串珠镰孢霉硝酸盐还原途径酶的遗传研究[J];菌物系统;2003年02期
8 马莎莎;张凡;舒福昌;侯读杰;佘跃惠;;新疆低温稠油油藏厌氧硝酸盐还原菌与硫酸盐还原菌富集产物菌群分析[J];化学与生物工程;2011年04期
9 高宝钗;戴友芝;胡克伟;王辉;贾明畅;;硝酸盐还原条件下Fe~0/厌氧微生物联合体系降解2,4,6-三氯酚[J];微生物学通报;2010年01期
10 孙廷春;;吃新鲜水有益健康[J];科技信息;1995年03期
中国重要报纸全文数据库 前2条
1 书增;哪些蔬菜你可能食用不当[N];北京科技报;2000年
2 张思思;睡前服溃疡药效果更好[N];中国医药报;2005年
中国硕士学位论文全文数据库 前6条
1 刘鹏;一株高效脱氮好氧适盐菌Photobacterium sp.LP的筛选及生物特性研究[D];山东大学;2015年
2 刘佳;微生物好氧硝酸盐还原产铵研究[D];四川大学;2007年
3 冯雯雯;硝酸盐还原菌与硫酸盐还原菌的相互作用[D];华东理工大学;2011年
4 汪国威;一株铁/硝酸盐还原菌分离、特性鉴定及其与铁氧化物作用[D];合肥工业大学;2013年
5 孟智奇;长三角地区饮用水源污染水体的微生物修复研究[D];浙江大学;2010年
6 马展;城市污水处理系统的菌群分析和nap基因的克隆表达[D];重庆医科大学;2003年
,本文编号:1792841
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1792841.html