当前位置:主页 > 科技论文 > 环境工程论文 >

流动注射—分光光度法检测痕量铜、碘和钴的新方法研究

发布时间:2018-05-19 15:46

  本文选题:流动注射分析 + 分光光度法 ; 参考:《西南科技大学》2015年硕士论文


【摘要】:痕量元素分析在诸多领域如环境监测、食品科学、现代医药学、生命科学、材料科学、地质、化工等领域都有重要意义。元素铜、碘和钴均为人体的必需微量元素,在人体内起着至关重要的作用,关于其痕量级测定方法的研究也引起人们越来越高的重视。流动注射技术(FIA)这种新型的溶液连续处理技术始建于1975年。分光光度法是FIA最为经典的联用检测手段。将两者联和后组成流动注射-分光光度法,利用此联用技术进行元素分析,既可避免了分光光度分析中繁琐的手工操作,使其灵敏度提高的同时又可实现自动连续分析和现场监测分析,且此方法对仪器要求较低、试剂也经济易得,适于推广普及,非常适合我国国情,因此研究发展迅速。本研究中建立了3个元素的流动注射-分光光度法分析测定体系,并对其应用进行了探索。(1)流动注射-分光光度法检测痕量铜在酸性介质中,铜与1-(2-吡啶偶氮)-2-萘酚(PAN)在表面活性剂溴化十六烷基吡啶(CPB)的存在下迅速发生高灵敏显色反应,据此建立了流动注射-分光光度法测定痕量铜的新方法。最佳分析条件经优化后确立为:显色体系中PAN浓度为0.20 g·L-1,CPB浓度为5.6 g·L-1,加入醋酸-醋酸钠缓冲溶液体积为8 m L/25 m L;主蠕动泵进样速度为8 m L·min-1,副蠕动泵进样速度为8m L·min-1,多通道采样阀进样时间为20 s,反应盘管长度为2.5 m。方法在Cu2+浓度10~180μg·L-1范围内与峰高呈线性关系(r=0.999),方法检出限为1.05μg·L-1,精密度RSD=1.03%(n=11)。应用于实际水样中痕量铜的检测,加标回收率为97.8%~104.5%,呈现良好的重现性和准确性,结果令人满意。(2)流动注射-分光光度法检测痕量碘在硫酸溶液介质中,十六烷基三甲基溴化胺(CTMAB)存在与KI过量条件下,利用IO3-与过量I-生成I3-,染料乙基紫与I3-反应生成蓝绿色缔合物。据此,以流动注射-分光光度法为检测技术,建立了测定痕量碘的新方法。最佳分析条件确定为:显色体系中乙基紫浓度为8.0×10-5 mol·L-1,KI溶液浓度为10 g·L-1,CTMAB浓度为1.0×10-4mol·L-1,硫酸溶液浓度为0.10 mol·L-1;主蠕动泵进样速度为6 m L·min-1,副蠕动泵进样速度为8 m L·min-1,多通道采样阀进样时间为15 s,反应盘管长度为2.5 m。方法在IO3-浓度20~250μg·L-1范围内与峰高呈现的线性关系良好,线性方程为A=0.0024c+0.1441(r=0.9991)。方法检出限为0.4μg·L-1,精密度为0.77%(n=11),经抗干扰能力检定,该方法具有较好的选择性和重现性。将方法应用于市场上几类食盐中的碘含量的测定,得加标回收率为97.1%~102.4%,效果可观。(3)流动注射-胶束增溶分光光度法检测痕量钴在硼砂缓冲溶液介质及在表面活性剂溴化十六烷基吡啶(CPB)作用下,Co(Ⅱ)可与水杨基荧光酮(SAF)迅速发生络合反应,据此将流动注射与胶束增溶分光光度法联用建立了测定痕量Co(Ⅱ)的新方法。最佳分析条件选定为:显色体系中SAF浓度为1.6×10-4 mol·L-1,CPB浓度为3.6 g·L-1,硼砂缓冲溶液体积为3 m L/25 m L;主蠕动泵进样速度为7 m L·min-1,副蠕动泵进样速度为1 m L·min-1,多通道采样阀进样时间为15 s,反应盘管长度为2 m。方法在Co2+浓度3~40μg·L-1范围内峰高与浓度成线性关系,线性方程A=0.006c+0.3693,相关系数r=0.9995,方法检出限DL=0.1μg·L-1,精密度为0.95%(n=11)。应用于检测实际水样中的痕量钴,加标回收率在97.0%~102.3%之间。
[Abstract]:Trace element analysis is of great significance in many fields, such as environmental monitoring, food science, modern medicine, life science, material science, geology, chemical industry and other fields. Element copper, iodine and cobalt are essential trace elements in human body, and play a vital role in human body. Higher attention. The flow injection technique (FIA), a new continuous solution treatment technology, was built in 1975. Spectrophotometric method is the most classical method for the detection of FIA. In order to improve the sensitivity and realize the automatic continuous analysis and field monitoring and analysis at the same time, this method has a low requirement for the instrument, and the reagent is also economical. It is suitable for popularization and popularization. It is very suitable for the national conditions of our country. Therefore, the research and development is rapid. In this study, 3 elements are established by flow injection spectrophotometry analysis and determination system. The application has been explored. (1) flow injection spectrophotometry is used to detect trace copper in acid medium, copper and 1- (2- pyridazo) -2- naphthol (PAN) are rapidly sensitive to color reaction in the presence of surfactant brominated sixteen alkyl pyridine (CPB). According to this, a new method for the determination of trace copper by flow injection spectrophotometry is established. The analysis conditions were optimized as follows: the concentration of PAN was 0.20 G. L-1, the concentration of CPB was 5.6 G. L-1, the volume of acetic acid sodium acetate buffer solution was 8 m L/25 m L, the injection speed of the main peristaltic pump was 8 m L. The method has a linear relationship with peak height in the range of Cu2+ concentration of 10~180 g / L-1. The detection limit is 1.05 mu g L-1 and precision RSD=1.03% (n=11). The detection of Trace Copper in actual water samples is applied to the detection of Trace Copper in actual water samples. The recovery rate is 97.8%~104.5%, and the results are satisfactory. (2) flow injection spectrophotometric detection marks In the medium of sulphuric acid solution, the presence of sixteen alkyl three methyl bromide (CTMAB) and the excess of KI, using IO3- and excess I- to produce I3-, and the reaction of dye ethyl violet and I3- to produce blue-green Association. In the color system, the concentration of ethyl violet is 8 * 10-5 mol. L-1, KI solution concentration is 10 g. L-1, CTMAB concentration is 1 x 10-4mol L-1, and the concentration of sulphuric acid solution is 0.10 mol L-1; the injection speed of the main peristaltic pump is 6 m L. The sampling speed of the auxiliary peristaltic pump is 8, and the sampling time of the multi-channel sampling valve is 15, and the reaction coil length is 2.5. The linear relationship between the peak height and the peak height in the range of IO3- concentration 20~250 g / L-1 is good, the linear equation is A=0.0024c+0.1441 (r=0.9991). The detection limit is 0.4 mu g. L-1 and the precision is 0.77% (n=11). The method has good selectivity and reproducibility. The method is applied to the iodine content of several kinds of salt in the market. The rate of recovery was 97.1%~102.4% and the result was significant. (3) flow injection micellar solubilization spectrophotometry was used to detect trace cobalt in borax buffer solution medium and surface active agent brominated sixteen alkyl pyridine (CPB), Co (II) could react with salicylfluorone (SAF) rapidly, according to which the flow injection and micelle solubilization was added. A new method for the determination of trace Co (II) was established by photometric method. The optimum analysis conditions are as follows: the concentration of SAF in the color system is 1.6 * 10-4 mol. L-1, CPB concentration is 3.6 g L-1, the volume of borax buffer solution is 3 m L/25 m L; the inlet velocity of the main peristaltic pump is 7 m. The inlet velocity of the auxiliary peristaltic pump is 1 The sample time was 15 s, and the reaction coil length of 2 M. was linear with the peak height and concentration in the Co2+ concentration of 3~40 mu g. L-1. The linear equation A=0.006c+0.3693, the correlation coefficient r=0.9995, the detection limit DL=0.1 micron G. L-1, the precision of 0.95% (n=11).
【学位授予单位】:西南科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O657.3;X832

【参考文献】

相关期刊论文 前10条

1 陈亚红,樊静,叶存玲,冯素玲;废水中痕量酚的流动注射停流-催化光度法测定[J];分析化学;2001年03期

2 张大伦,马燕,余有平*;负催化动力学光度法测定微量碘的研究[J];分析科学学报;2001年02期

3 白林山,黎伟利;靛蓝胭脂红-溴酸钾体系催化光度法测定微量碘[J];分析试验室;2001年03期

4 季剑波;;微波消解-水杨基荧光酮光度法测定中草药中痕量锗[J];分析试验室;2007年10期

5 谭爱民,周驰;流动注射分析[J];分析试验室;1995年06期

6 刘华忠,陈小云,罗萍;微量元素铜的研究进展[J];国外畜牧学(猪与禽);2000年01期

7 李昌厚;;略论流动注射分析及其发展[J];光学仪器;1990年01期

8 尚德;杜文勇;罗建民;;流动注射-分光光度法测定环境水样中的硫化物[J];光谱实验室;2013年01期

9 冯立明;双波长分光光度法测定焦磷酸盐仿金镀液中的铜、锌含量[J];化学分析计量;2001年05期

10 黄典文,叶雪芬;酸性络蓝K褪色光度法测定食盐中微量碘[J];理化检验(化学分册);2001年04期



本文编号:1910684

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1910684.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c9236***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com