纯菌生物阴极MFCs还原Cr(Ⅵ)的浓度与腐殖酸效应
发布时间:2018-07-14 14:28
【摘要】:微生物燃料电池(MFCs)是近二十年新兴的能够实现能源和环境问题共同解决的新技术。MFCs由于其清洁、高效、成本低等特点受到广泛关注,且在处理回收重金属离子、脱氮、除碳等方面具有广阔的应用前景,但是以贵金属作为阴极催化剂使MFCs成本提高,限制了MFCs的应用,而以微生物作为阴极催化剂的生物阴极MFCs降低了MFCs的成本,是未来MFCs发展的方向之一。明确的生物阴极微生物电子传递机制可以提高MFCs效率,降低成本。纯菌生物阴极MFCs有助于明晰生物阴极微生物的电子传递机制,结合Cr(Ⅵ)作为电子受体在阴极的还原,同时实现电能输出与Cr(Ⅵ)处理减毒的目的。本实验利用传统平板分离法分离得到14株还原Cr(Ⅵ)的生物阴极纯菌,比较了在不同Cr(Ⅵ)浓度与HA存在时混菌与14株纯菌生物阴极MFCs的还原Cr(Ⅵ)性能与电能输出。在HA不存在时,纯菌生物阴极MFCs可以高效还原Cr(Ⅵ),5#纯菌生物阴极MFCs还原Cr(Ⅵ)能力比混菌MFCs高14%,达到了2.27±0.23 mg/(L·h),电子流分布有95%去向已知,但是电流密度只有混菌的50%。1#纯菌生物阴极MFCs输出电能比混菌高15%,达到29 mW/m2,还原速率与混菌相同,电子流分布50%去向已知。降低Cr(Ⅵ)浓度使MFCs性能下降。HA在不同程度上抑制了生物阴极MFCs还原Cr(VI)的性能,其中3#纯菌生物阴极MFCs降低了36%,只有0.28±0.13g/L/h。加入HA对MFCs功率输出无明显影响,但是混菌与14株纯菌生物阴极MFCs生物阴极库伦效率降低,生物量减少,且改变了纯菌生物阴极微生物的电子传递机制。
[Abstract]:Microbial fuel cell (MFCs) is a new technology which can solve energy and environment problems together in the last two decades. It has been widely paid attention to because of its clean, high efficiency and low cost, and it is also in the process of recovering heavy metal ions and denitrification. However, the cost of MFCs is increased by using noble metal as cathode catalyst, which limits the application of MFCs, while the bio-cathode MFCs with microorganisms as cathode catalyst reduces the cost of MFCs. It is one of the developing directions of MFCs in the future. The clear mechanism of microbial electron transport in biological cathode can improve the efficiency of MFCs and reduce the cost. The pure microbial biological cathode MFCs can help to clarify the electron transfer mechanism of biological cathode microorganism, combine Cr (鈪,
本文编号:2121934
[Abstract]:Microbial fuel cell (MFCs) is a new technology which can solve energy and environment problems together in the last two decades. It has been widely paid attention to because of its clean, high efficiency and low cost, and it is also in the process of recovering heavy metal ions and denitrification. However, the cost of MFCs is increased by using noble metal as cathode catalyst, which limits the application of MFCs, while the bio-cathode MFCs with microorganisms as cathode catalyst reduces the cost of MFCs. It is one of the developing directions of MFCs in the future. The clear mechanism of microbial electron transport in biological cathode can improve the efficiency of MFCs and reduce the cost. The pure microbial biological cathode MFCs can help to clarify the electron transfer mechanism of biological cathode microorganism, combine Cr (鈪,
本文编号:2121934
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/2121934.html
最近更新
教材专著