共代谢生物催化三氯乙烯降解工艺与机理研究
[Abstract]:Volatile chlorohydrocarbon trichloroethylene (Trichloroethene, TCE), which has the effect of "teratogenesis, carcinogenesis and mutagenesis", is an important organic solvent and chemical raw material. But improper disposal in the process of use leads to the leakage and direct emission of TCE, which seriously pollutes the water, soil and atmospheric environment. As an important source of TCE, the domestic waste landfill A large number of chlorinated hydrocarbons are produced in the degradation process of organic matter. A large number of functional microorganisms are produced under the stress of long-term greenhouse gas methane, carbon dioxide and volatile chlorinated hydrocarbons, and the mixed bacteria enriched by the source of pollution have the biological characteristics of high tolerance and cross nutrition, and can be metabolize and direct oxygen through co metabolism. The more effective degradation of chlorohydrocarbon pollutants is considered as an effective way to remove chlorinated hydrocarbons from TCE. Accordingly, this paper aims to clear the structure of the functional microbial population in the landfill and achieve the goal of efficient methane emission reduction and TCE biodegradation. The functional microbial sieves are carried out in the landfill cover soil as a biological medium. Selection, sequence analysis of functional gene cluster and biodegradation of chlorohydrocarbon, the results are as follows: 1) the methane oxidation capacity of typical landfill covered soil was investigated. It was found that the methane oxidation ability of Chongqing area was stronger, and the initial volume concentration of 14% methane was reached to 99.8%. soil sample in the range of pH value 6 to -8.8 by 150 h degradation rate. The strong methane oxidation ability, the pH=7.02 methane degradation ability is the strongest, the addition of NMS culture base can improve the methane oxidation effect of soil microbe.2), a methane oxidizing bacteria JTC3 which can degrade TCE is separated. The strain has strong degradation ability to TCE. When the initial concentration is 15.64 u mol/L, the 5 d degradation rate is 93.79%. and low concentration TCE (12.55-20.76). The methane oxidation was promoted. The 16S rDNA sequence sequencing comparison and phylogenetic tree analysis were identified as the facultative methane oxidizing bacteria Methylocystis sp., and the granular methane monooxygenase (pMMO) gene cluster was amplified by semi nested PCR method, and T-A cloned and sequenced, and the 3227 BP pmoCAB base was obtained by amplification, sequencing and splicing. The cluster sequence, including 771 BP pmoC gene, 759 BP pmoA gene, 1260 BP pmoB gene and 2 non coding intermediate sequences, corresponding gamma, beta, and alpha subunit theoretical molecular weights respectively 29.1 kDa, 28.6 kDa and 45.6 kDa.3) from the landfill of Chongqing Changsheng bridge landfill for 2 years to methane as the carbon source mixed bacteria, named SWA1.SWA1 can be named Methane is a carbon source to achieve continuous and stable isolated culture. Non methane water-soluble carbon sources will cause the strain that can not be used with methane to become the dominant strain. Low concentration (14.06 mu mol/L) TCE can promote the growth of mixed bacteria group. The increase of copper ion concentration of coenzyme factor promotes the growth of mixed bacteria group and the improvement of methane degradation ability by.4). The process conditions for biodegradation of TCE by bacteria SWA1 are optimized. The higher the TCE concentration is, the higher the TCE concentration is, the higher the degradation rate is in the total initial concentration of TCE when the total initial concentration of TCE is 110.23 u mol/L, and the biodegradation depends on the biological enzyme. After the depletion of the co metabolism matrix methane, the microorganism is used. The existing oxygenase still maintains the TCE degradation activity, but with the continuous consumption of energy, the degradation of TCE will weaken. Copper ions can promote the growth of mixed bacteria group and TCE degradation. TCE in the low copper ion concentration zone (0-0.75 / mol/L) and high copper ion concentration zone (1-15 mu mol/L) has the peak of degradation. When C (Cu2+) =0.03 um mol/L, the TCE degradation rate The maximum 95.75%, when the copper ion concentration was 5 mol/L, the TCE degradation rate reached the highest 84.75%.5) by reverse transcriptase real-time quantitative PCR (Real-time quantitative reverse transcription PCR, RT-qPCR), T-A clone sequencing and high throughput sequencing technology to analyze the community structure of mixed bacteria group, and the mechanism of biodegradation of TCE was deduced. The quantitative PCR results show that the granular methane monooxygenase (particulate methane monooxygenase, pMMO) is the Guan Jianmei in the TCE degradation process. When the concentration of copper ion is 0.03 u mol/L, the peak of the transcription and expression of the pmoA gene and the mmoX gene appears, and the addition of copper ions is beneficial to the expression of the LmpH gene. At the same time, the addition of low concentration (32.17 mu mol/L) is added. The effect of addition on the expression of pmoA was not significant.T-A cloning results showed that the addition of TCE changed the microbial community structure, reduced the abundance of methane oxidizing bacteria and increased the species of non methane oxidizing bacteria. At the same time, the metabolites of methane and TCE provided the raw materials for the non methane oxidizing bacteria, which made the original low abundance microbial resuscitation. High throughput sequencing results showed that The dominant microbes in the mixed bacteria group SWA1 are methane oxidizing bacteria of the methyl cyclosporaceae Methylocystaceae, in addition to the microorganisms that can degrade TCE, such as the Lactococcus of the genus Lactococcus and the Bacillus spore, Bacillus. The increase of copper ion concentration stimulates the growth of the II methane oxidizing bacteria, while the inhibition effect on other non methane oxidizing bacteria is high. The microbial diversity of the mixed bacteria in the copper ion concentration range was reduced, the low concentration of copper ion 0-0.75 and the high concentration range 1-15 u mol/L, the TCE degradation mechanism were different, the low concentration range was mainly pMMO, the dissolved methane monooxygenase (Soluble Methane Monooxygenases, sMMO) Co metabolic degradation of TCE and TCE directly. In high concentration copper ionization. The co metabolism of phenol, hydroxylase and other non methanogenic bacteria played a key role in the degradation of TCE.
【学位授予单位】:重庆理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:X172;X799.3
【相似文献】
相关期刊论文 前10条
1 侯雪敏;臧淑艳;李盼盼;王娟;秦晓龙;林乐;;黑曲霉对菲共代谢降解的影响[J];沈阳化工大学学报;2012年02期
2 孙文杰,刘勇弟;微生物共代谢作用的研究进展[J];安阳师范学院学报;2003年02期
3 孙雪景;王静;焦岩;王占华;;微生物共代谢作用的研究与应用[J];农业与技术;2010年04期
4 温继伟;高大文;;偏肿拟栓菌共代谢降解芘条件的优化[J];中国环境科学;2011年09期
5 巩宗强,李培军,王新,张海荣,张春桂,许华夏;真菌对土壤中苯并[a]芘的共代谢降解[J];环境科学研究;2001年06期
6 罗玮;;难降解污染物微生物共代谢作用研究进展[J];土壤通报;2012年06期
7 孙倩;;基于微生物共代谢作用去除废水中难降解物质的研究进展[J];科技致富向导;2013年35期
8 郭莹;崔康平;;不同共代谢基质下三氯乙烯的厌氧生物降解研究[J];地下水;2014年01期
9 张锡辉,R.Bajpai;以关键酶为基础共代谢模型的建立——以甲烷细菌共代谢三氯乙烯为例[J];环境科学学报;2000年05期
10 巩宗强,李培军,王新,张海荣,宋玉芳,李彬;芘在土壤中的共代谢降解研究[J];应用生态学报;2001年03期
相关会议论文 前8条
1 李聪聪;成小英;周青;张光生;;植物-微生物共代谢系统在湖泊修复中作用[A];中国河道治理与生态修复技术专刊[C];2010年
2 刘世亮;骆永明;吴龙华;曹志洪;;真菌对苯并[a]芘污染土壤共代谢降解研究[A];土壤资源持续利用和生态环境安全——中国土壤学会第十一届二次理事扩大会议暨学术会议论文集[C];2009年
3 骆玮诗;张刚;贾晓珊;;一种新的共代谢分解现象:厌氧同时除磷脱氨氮[A];2011中国环境科学学会学术年会论文集(第二卷)[C];2011年
4 黄丽萍;郭瑞;甘琳琳;王宁;;微生物燃料电池生物阳极的五氯酚共代谢降解[A];第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集[C];2011年
5 黄流雅;胡娟;张巍;应维琪;;三氯乙烯在苯酚驯化微生物中的共代谢降解性能研究[A];上海市化学化工学会2011年度学术年会论文集[C];2011年
6 陈梅雪;刘会娟;王菊思;王怡中;;蜡状芽孢杆菌对偶氮染料酸性红B的共代谢脱色研究[A];中国化学会第八届水处理化学大会暨学术研讨会论文集[C];2006年
7 段云霞;韩振为;隋红;李鑫刚;;三氯乙烯(TCE)和甲苯初始质量浓度的不同对共代谢的影响[A];中国化工学会2003年石油化工学术年会论文集[C];2003年
8 彭星星;张再利;贾晓珊;;厌氧共代谢分解四溴双酚A的关键非生长碳源[A];持久性有机污染物论坛2011暨第六届持久性有机污染物全国学术研讨会论文集[C];2011年
相关博士学位论文 前9条
1 王雪莲;三氯乙烯的好氧共代谢与挥发模型研究[D];中国地质大学(北京);2006年
2 李岩;好氧共代谢降解地下水和土壤中三氯乙烯的研究[D];南开大学;2014年
3 史敬华;不同基质共代谢降解地下水中四氯乙烯的研究[D];中国地质大学(北京);2006年
4 孙永利;固定化—共代谢技术处理五氯苯酚研究[D];天津大学;2007年
5 隋红;生物通风和共代谢生物通风去除有机污染物及数学模拟研究[D];天津大学;2004年
6 王建辉;基于共代谢作用微曝气SBR处理难降解有机废水研究[D];哈尔滨工业大学;2014年
7 时胜男;Arthrobacter sp.W1共代谢杂环芳烃及其强化处理焦化废水的研究[D];哈尔滨工业大学;2014年
8 徐冰洁;不同碳源条件下功能菌共代谢降解典型PPCPs的效能与机理[D];东华大学;2014年
9 黄流雅;四种三氯乙烯去除工艺的基础研究与比较[D];华东理工大学;2012年
相关硕士学位论文 前10条
1 王肖;复合MBR强化去除污水中残留抗生素的效果研究[D];东南大学;2015年
2 徐政雪;光催化与生物降解直接耦合体系的优化及共代谢调控[D];吉林大学;2016年
3 李亚龙;芳烃类石油污染物降解优势菌株的筛选与研究[D];中国地质大学(北京);2016年
4 臧苗苗;嗜吡啶红球菌GF3共代谢降解蒽醌化合物特性研究[D];大连理工大学;2016年
5 高艳辉;共代谢生物催化三氯乙烯降解工艺与机理研究[D];重庆理工大学;2016年
6 张为;不同基质共代谢降解废水中靛蓝的研究[D];广东工业大学;2013年
7 邢东;油田含油/含聚污水共代谢生物处理技术及其效能研究[D];东北林业大学;2013年
8 张文健;不同共代谢基质调节Stenotrophomonas maltophilia R551-3的吡虫啉代谢途径的研究[D];南京师范大学;2011年
9 周沛婕;光合细菌共代谢降解对氯苯酚废水的研究[D];浙江工业大学;2014年
10 袁芳;2,,4-二硝基甲苯的微生物共代谢降解研究[D];南京理工大学;2012年
本文编号:2136975
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/2136975.html