当前位置:主页 > 科技论文 > 环境工程论文 >

水中多环芳烃与DNA之间的相互作用及机制

发布时间:2019-05-17 10:51
【摘要】:多环芳烃(PAHs)被美国环保署(EPA)列为优先控制的一类持久性有机污染物。由于具有致癌、致畸和致突变性,且普遍存在于污染土壤、水体和空气中,PAHs的环境行为受到国内外广泛关注。众多资料表明,PAHs能被生物有机体吸收并在组织间分配;PAHs与生物质之间的相互作用已成为环境领域研究的热点之一。目前,物理作用支配下,在分子尺度上PAHs与生物质间相互作用如何?该研究开始受到关注;其中,可否利用荧光分析技术来揭示DNA与PAHs之间的相互作用?国内外相关资料仍很缺乏。本论文以菲和芘为PAHs代表物,利用荧光分析技术探究了 PAHs与DNA之间的相互作用及机制;利用荧光光谱分析技术和荧光猝灭滴定技术,研究了不同酸度情况下(酸度影响DNA的质子化过程)PAHs与DNA之间的结合规律,分析了质子化反应对DNA-PAHs结合能力的影响。主要研究结果如下:(1)利用荧光分析技术,研究了 DNA与菲和芘之间的相互作用。两种PAHs分别被DNA溶液滴定,通过激发-发射荧光矩阵光谱,测定了光谱强度变化和波长位移。结果证明,菲和芘能与DNA中碱基单元结合。然而,由于菲和芘之间的分子尺寸效应,两者反应的程度和机制存在差异。DNA能够显著导致菲荧光发射光的猝灭,然而其对芘的荧光猝灭效应较弱。菲与DNA通过一个作用位点、浓度单位上以1/1的方式进行结合,但由于DNA-芘分子间相互作用力非常弱,芘与DNA的结合能力较弱。进一步研究发现,虽然菲芘与DNA之间结合能力存在差异,但所增加的DNA均能够造成菲和芘发射波谱的蓝移。这表明DNA和菲、芘之间均形成不发光的复合物。该研究结果为揭示DNA和PAHs分子之间的物理性相互作用提供了 一种新手段。(2)DNA能够通过静态猝灭的方式引起PAHs分子的的荧光猝灭,主要原因为二者之间形成了不产生荧光的复合物;在此基础之上,进一步探究了不同酸度影响下PAHs与DNA之间的结合规律。通过分析发射光谱的变化发现,随着酸度降低,DNA能明显地导致菲发射光谱蓝移,证实酸度能造成DNA碱基的质子化,从而可能影响PAHs与碱基之间的π-π电子堆积。进一步研究发现,在酸度较强的条件下,DNA不能有效地造成菲荧光猝灭,表明DNA分子外围的磷酸基质子化阻碍了菲与DNA内部碱基的结合。计算了荧光猝灭常数,得出猝灭常数遵循pH 9.0(0.34)≈ pH 7.0(0.36)pH3.0(0.26)的规律。结合位点的研究结果揭示,三种酸度条件下,DNA和菲的结合位点均是一,表明酸度条件并不影响DNA与菲的结合位点,仅通过碱性条件下脱质子化增强DNA与菲的结合效率(结合常数)。本论文研究结果为寻求PAHs分子猝灭剂、评估PAHs的生物分子毒理、揭示PAHs与生物遗传物质之间的分子作用等提供了重要基础依据。
[Abstract]:Polycyclic aromatic hydrocarbons (PAHs) are classified as a class of persistent organic pollutants by the United States Environmental Protection Agency (EPA). The environmental behavior of PAHs is of great concern at home and abroad due to the carcinogenic, teratogenic and mutagenicity, and is ubiquitous in the polluted soil, water and air. Many data indicate that PAHs can be absorbed by biological organisms and distributed among tissues; the interaction between PAHs and biomass has become one of the hot spots in the field of environment research. At present, how is the interaction between PAHs and biomass at the molecular scale under the control of physical action? The study has begun to be of concern; in which, can fluorescence analysis techniques be used to reveal the interaction between DNA and PAHs? The relevant information at home and abroad is still lacking. In this paper, the interaction and mechanism between PAHs and DNA were studied by means of fluorescence analysis. The fluorescence spectrum analysis and the fluorescence quenching titration were used to study the interaction and mechanism between PAHs and DNA. The binding of PAHs and DNA in the condition of different acidity (acidity-affected DNA) was studied, and the effect of protonation on the binding capacity of DNA-PAHs was analyzed. The main results are as follows: (1) The interaction between DNA and phenanthrene and phenanthrene is studied by fluorescence analysis. The two kinds of PAHs were titrated by DNA solution respectively, and the spectral intensity and the wavelength shift were measured by the excitation-emission fluorescence matrix. As a result, the phenanthrene and the antigen can be combined with the base unit in the DNA. However, due to the molecular size effect of the phenanthrene, there is a difference in the degree and mechanism of the reaction. DNA can significantly lead to the quenching of the fluorescence emission of the phenanthrene, but its fluorescence quenching effect on the fluorescence is weak. The interaction between the DNA and the DNA is very weak, and the binding ability of the DNA to the DNA is weak due to the very weak interaction between the DNA and the DNA. Further studies have found that, although the binding capacity between the phenanthrene and the DNA is different, the increased DNA can cause the blue shift of the phenanthrene emission spectrum. This indicates that no light-emitting complex is formed between the DNA and the phenanthrene. The results of this study provide a new means to reveal the physical interaction between the DNA and the PAHs molecules. (2) The fluorescence quenching of the PAHs in the DNA can be caused by the static quenching, and the main reason is that the fluorescence-free complex is formed between the two, and the binding rule between the PAHs and the DNA under the influence of different acidity is further explored. By analyzing the change of the emission spectrum, with the decrease of the acidity, the DNA can obviously lead to the blue shift of the phenanthrene emission spectrum, and it is confirmed that the acidity can cause the protonation of the DNA base, which may affect the electron-to-electron accumulation between the PAHs and the base. The further study found that, under the condition of strong acidity, the DNA could not effectively cause the fluorescence quenching of the phenanthrene, indicating that the protonation of the phosphate group on the periphery of the DNA molecule hindered the binding of the phenanthrene to the internal base of the DNA. The fluorescence quenching constant was calculated, and the law of pH 9.0 (0.34) and pH 7.0 (0.36) pH 3.0 (0.26) was obtained. The results of the study revealed that the binding sites of DNA and phenanthrene in three kinds of acidity condition are one, indicating that the acidity condition does not affect the binding sites of the DNA and the phenanthrene, and the binding efficiency (binding constant) of the DNA and the phenanthrene is enhanced only by deprotonation under alkaline conditions. The results of this paper are to find the molecular-quenching agent of PAHs, to evaluate the biological molecular toxicology of PAHs, and to reveal the molecular function of PAHs and the biological genetic material.
【学位授予单位】:南京农业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X52;X17

【相似文献】

相关期刊论文 前10条

1 徐耀忠;Thiobase DNA: the chemistry and some applications in cancer studies[J];Progress in Natural Science;2000年06期

2 傅衍 ,牛冬 ,阮晖 ,陈海燕;COMPARISON OF DIFFERENT ENZYMES AND PROBES AND THEIR COMBINATIONS IN DNA FINGERPRINTING[J];Journal of Zhejiang University Science;2001年04期

3 安小惠 ,王一理 ,来宝长 ,耿一萍 ,司履生;CONSTRUCTION OF HUMAN INTERLUEKIN-18 DNA VACCINE AND IT'S EXPRESSION IN MAMMALIAN CELLS[J];Journal of Xi'an Medical University;2001年02期

4 张鹏 ,孟继本 ,龙江 ,松浦辉男 ,王永梅;Synthesis of Benzo [α]phenoxazin-5-one Derivatives and Their Interactions with DNA[J];Chinese Journal of Chemistry;2002年05期

5 ;DIFFERENT RESULTS BY DIFFERENT COMMERCIAL TAQ DNA POLYMERASE IN RAPD[J];四川动物;2002年02期

6 ;Genetic Diversity of Three Aristichthys nobilis Populations and One Inbreeding Stock[J];Wuhan University Journal of Natural Sciences;2002年02期

7 强晓艺;DNA计算的应用与展望[J];西安联合大学学报;2002年02期

8 王军阳,范桂香,胜利,袁育康;THE CONSTRUCTION AND PRELIMINARY APPRAISEMENT OF HSV-2 gD GENE DNA VACCINE[J];Academic Journal of Xi'an Jiaotong University;2002年02期

9 董菁 ,成军 ,王勤环 ,施双双 ,王刚 ,斯崇文;CLONING AND ANALYSIS OF THE GENOMIC DNA SEQUENCE OF AUGMENTER OF LIVERR EGENERATION FROM RAT[J];Chinese Medical Sciences Journal;2002年02期

10 谢传晓;Evidence for Base Substitutions and Repair of DNA Mismatch Damage Induced by Low Energy N~+ Ion Beam Implantation in E. coli[J];High Technology Letters;2003年02期

相关会议论文 前10条

1 Michael J.Siefkes;Cory O.Brant;Ronald B.Walter;;A novel real-time XL-PCR for DNA damage detection[A];渔业科技创新与发展方式转变——2011年中国水产学会学术年会论文摘要集[C];2011年

2 ;Hormonal Regulation and Tumorigenic Role of DNA Methyltransferase[A];2011中国妇产科学术会议暨浙江省计划生育与生殖医学学术年会暨生殖健康讲习班论文汇编[C];2011年

3 Dongmei Zhao;Fan Jin;Yuli Qian;Hefeng Huang;;Expression patterns of Dnmtl and Dnmt3b in preimplantational mouse embryos and effects of in-vitro cultures on their expression[A];中华医学会第十次全国妇产科学术会议妇科内分泌会场(妇科内分泌学组、绝经学组、计划生育学组)论文汇编[C];2012年

4 姜东成;蒋稼欢;杨力;蔡绍皙;K.-L.Paul Sung;;在聚吡咯微点致动下的DNA杂交行为[A];2008年全国生物流变学与生物力学学术会议论文摘要集[C];2008年

5 白明慧;翁小成;周翔;;联邻苯二酚类小分子作为DNA交联剂的研究[A];第六届全国化学生物学学术会议论文摘要集[C];2009年

6 张晔;杜智;杨斌;高英堂;;检测外周血中游离DNA的应用前景(综述)[A];天津市生物医学工程学会第29届学术年会暨首届生物医学工程前沿科学研讨会论文集[C];2009年

7 周红;郑江;王良喜;丁国富;鲁永玲;潘文东;罗平;肖光夏;;CpG DNA诱导全身炎症反应综合征的作用及其机制研究[A];全国烧伤创面处理、感染专题研讨会论文汇编[C];2004年

8 ;EFFECTS OF Ku70-DEFICIENT ON ARSENITE-INDUCED DNA DOUBLE STRAND BREAKS, CHROMOSOMAL ALTERATIONS AND CELL CYCLE ARREST[A];海峡两岸第三届毒理学研讨会论文摘要[C];2005年

9 李经建;冀中华;蔡生民;;小沟结合方式中的DNA媒介电荷转移[A];第十三次全国电化学会议论文摘要集(下集)[C];2005年

10 ;The interaction between Levofloxacine Hydrochloride and DNA mediated by Cu~(2+)[A];湖北省化学化工学会2006年年会暨循环经济专家论坛论文集[C];2006年

相关重要报纸文章 前10条

1 本报记者 袁满;平安:把“领先”作为DNA[N];经济观察报;2006年

2 舒放;编织一个DNA纳米桶[N];医药经济报;2006年

3 闫洁;英两无罪公民起诉要求销毁DNA记录[N];新华每日电讯;2008年

4 何德功;日本制成诊断鱼病的“DNA书”[N];农民日报;2004年

5 本报记者 张巍巍;DNA样本也能作假[N];科技日报;2009年

6 周斌伟 邹巍;苏州警方应用DNA技术一年侦破案件1887起[N];人民公安报;2011年

7 本报记者 杨天笑;揭秘“神探”DNA[N];苏州日报;2011年

8 第四军医大学基础医学部生物化学与分子生物学教研室教授 李福洋;破除法老DNA的咒语[N];东方早报;2011年

9 常丽君;DNA电路可检测导致疾病的基因损伤[N];科技日报;2012年

10 常丽君;效率和质量:“DNA制造业”两大障碍被攻克[N];科技日报;2012年

相关博士学位论文 前10条

1 唐阳;基于质谱技术的基因组DNA甲基化及其氧化衍生物分析[D];武汉大学;2014年

2 池晴佳;DNA动力学与弹性性质研究[D];重庆大学;2015年

3 胡璐璐;哺乳动物DNA去甲基化过程关键酶TET2的三维结构与P暬蒲芯縖D];复旦大学;2014年

4 马寅洲;基于滚环扩增的DNA自组装技术的研究[D];南京大学;2014年

5 黄学锋;精子DNA碎片的临床意义:临床和实验研究[D];复旦大学;2013年

6 隋江东;APE1促进DNA-PKcs介导hnRNPA1磷酸化及其在有丝分裂期端粒保护中的作用[D];第三军医大学;2015年

7 刘松柏;结构特异性核酸酶FEN1在DNA复制及细胞周期过程中的功能性研究[D];浙江大学;2015年

8 王璐;哺乳动物中亲本DNA甲基化的重编程与继承[D];中国科学院北京基因组研究所;2015年

9 齐文靖;染色质改构蛋白BRG1在DNA双链断裂修复中的作用及机制研究[D];东北师范大学;2015年

10 龙湍;水稻T-DNA插入突变群体侧翼序列的分离分析和OsaTRZ2的克隆与功能鉴定[D];华中农业大学;2014年

相关硕士学位论文 前10条

1 董洪奎;面向可视化纳米操作的DNA运动学建模及误差实时校正方法[D];沈阳理工大学;2014年

2 闻金燕;水溶性羧基和吡啶基咔咯大环与DNA和人血清蛋白的相互作用[D];华南理工大学;2015年

3 江怿雨;水溶性羧酸卟啉及其配合物与DNA和人血清蛋白的相互作用[D];华南理工大学;2015年

4 高志森;比较外周游离循环肿瘤DNA与癌胚抗原监测非小细胞肺癌根治术前后肿瘤负荷变化的初步研究[D];福建医科大学;2015年

5 丁浩;血浆循环DNA完整性及多基因甲基化对肺癌诊断价值的研究[D];河北大学;2015年

6 王鹏;基于碳点@氧化石墨烯复合材料DNA生物传感器的构建及用于PML/RARα基因检测[D];福建医科大学;2015年

7 李海青;转碱篷和盐角草总DNA的耐盐紫花苜蓿的选育[D];内蒙古大学;2015年

8 李婷婷;小鼠DNA模式识别重要受体的分子结构特征及其功能研究[D];中国农业科学院;2015年

9 刘瑞斯;抗癌药物奥沙利铂与DNA相互作用的原子力显微镜观察研究[D];东北林业大学;2015年

10 熊忠;芳香二肽与一价金属离子间相互作用及DNA切割活性的研究[D];郑州大学;2015年



本文编号:2479040

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/2479040.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fda53***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com