当前位置:主页 > 科技论文 > 环境工程论文 >

洋河流域大气多环芳烃的时空变异及长距离迁移潜力分析

发布时间:2019-06-20 07:22
【摘要】:多环芳烃(Polycyclic Aromatic Hydrocarbons, PAHs)作为持久性有毒污染物(PTS)中的一类,具有毒性、生物聚积性、难降解性,并且可随大气长距离迁移潜力。由于燃料的不完全燃烧而产生大量PAHs,其理化性质决定了PAHs易被吸附在颗粒物表面。降尘作为大气和其他环境物质交换的一个重要环节,吸附了一部分PAHs,在大气环流控制下,共同进行长距离迁移,最终受重力影响降落至地表。大气气溶胶是悬浮在大气中的直径小于10微米的微粒子,这些粒子可吸附大量PAHs,且在大气中停留时间较长,对空气质量、人体健康都产生较大影响。PAHs会随着气溶胶和降尘通过大气传输和气-土,气-水交换进入周边环境,不仅对大气环境构成威胁,也对地面及地表水生态环境造成潜在威胁。由于水源地通常作为自然保护区、生态脆弱区以及工农业用水尤其是居民饮用水安全保障地,因此周边PAHs排放源是否会对水源地的生态环境带来危害备受各方关注,成为PTS研究领域的一个新热点。本研究以位于北京西北方向上风向的洋河流域为研究对象,不仅因为该流域腹地--张家口是我国北方重要的老工业基地、具有明显的PAHs排放源特征,而且也因为它是北京重要水源地和生态保护屏障以及我国北方典型的农牧交错带和生态脆弱敏感区,同时还是2022年冬奥会的申办地,具有及重要的战略地位。为了全面地反映洋河流域大气中多环芳烃的污染现状,首先通过对洋河流域工、农业生产和居民生活等相关数据资料的收集和分析,估算了流域各行业、各县市PAHs排放因子及单体排放量。与此同时,本研究在洋河流域和北京地区设立了20个采样点,代表草原牧区、工业区、居民区、水源地及北京城区,于2013年11月至2014年11月,以季度为单位进行气溶胶及降尘PAHs的采样,分析大气中PAHs的时空变异特征,并且通过运用分子标识物及主成分分析得出了大气中PAHs的排放来源;运用逸度方法构建了洋河流域地区多介质逸度迁移模型来模拟大气中PAHs的远距离迁移潜力特征。研究结果表明:(1)从排放行业看,洋河流域大气PAHs的重要排放源是煤炭燃烧源,洋河流域90%的煤炭消耗量产生了76%的PAHs,其中工业(含发电供热)用煤量为6.1×103 t,产生的PAHs排放量为1.8×102 t;家庭用煤量为8.4×102 t,产生的PAHs排放量,为1.2×102t。秸秆燃烧源产生的PAHs仅次于煤炭燃烧源所产生的PAHs,在洋河流域6%的秸秆燃烧量产生了16%的PAHs。其余排放源所占比例不足10%。从排放区域看,宣化县由于较快的经济发展程度和以煤炭为主的能源结构,产生的多环芳烃排放量最大,约为49 t;其次是兴和县,约为29 t,这与该地区的交通用油及家庭燃煤有关;最少的是万全县,约为15 t。从排放谱看,低环(2-3环):PAHs的排放量接近于高环分子(4-6环)的排放量。其中Nap的排放量最高,贡献率达到21%,与重工业燃油、煤焦油或金属冶炼有关;Phe、Flu、Pyr和BaP排放贡献率分别占12%、9.1%、8.4%和7.4%。(2)实验数据表明,洋河流域气溶胶Σ16PAHs年排放量为655~1689ng/m3,年平均为308±139ng/m3。气溶胶中Σ16PAHs含量主要以低环分子为主,是高环分子的1.3倍。洋河流域气溶胶中Σ16PAHs平均质量浓度最大值出现在1月,最小值出现在7月,4月和10月平均值相差不大。气溶胶中Σ16PAHs浓度最低值位于兴河县和天镇县采样点,最高值出现在蝉窑村、北京城区教学植物园采样点。地理环境、气象条件的差异以及能源结构不同等原因,导致了气溶胶中Σ16PAHs的含量呈现出明显的空间差异性,即工业区(1388 ng/m3)北京城区(1077 ng/m3)居民区(844n∥m3)水源地(708 ng/m3)草原背景点(374ng/m3)。(3)洋河流域降尘中Σ16PAHs的排放量为503-2593ng/m2,年平均值为1017±405ng/m2。降尘中Σ16PAHs的时间分布与气溶胶中Σ16PAHs的时间分布呈现出一致性,均为Σ16PAHs平均质量浓度最大值出现在1月,最小值出现在7月。从空间分布上看,降尘中Σ16PAHs浓度最低值位于北京城区的后白虎店采样点,最高值出现在蝉窑村采样点。各功能区降尘中Σ16PAHs含量也存在较大差异。降尘Σ16PAHs年平均值呈现出工业区(1729 ng/m2)草原背景点(1566ng/m2)北京城区(1389ng/m2)居民区(1062 ng/m2)水源地(172 ng/m2)。(4)洋河流域年降尘量范围为0.26-1.06g/m2,年平均值为0.49±0.22∥m2。春季(4月)降尘量达到最大,冬季(1月)降尘量最小。最高值出现在方家庄,约1.1g/m2,巴图湾、东北新村年降尘量最少,均为0.27g/m2。从功能区划分,年降尘量表现趋势为:工业区(0.62g/m2)居民区(0.58g/m2)水源地(0.5g/m2)草原牧区(0.32∥m2)。(5)源解析分析得出,洋河流域大气气溶胶及降尘中PAHs的污染来源具有一致性,主要与煤及相关油类燃烧有关,即煤炭和木材等生物质燃烧、柴油燃烧废气及汽油引擎排放等。另外研究区域的污染与重工业金属冶炼、炼钢等工业生产也对高浓度PAHs具有一定的贡献率。(6)16种PAHs中Pyr、Chr及Flu的传输距较远,可能会污染北京的大气环境。洋河流域大气中16种PAHs的迁移距离为13 km (DBA)~712 km (Flu),平均值为163kmm,迁移潜力最小的是以DBA和BghiP为主的5-6环芳烃;迁移潜力最大的是以Flu为主的4环芳烃。持久性为0.33 d (Ace)~907 d (BaP);平均值为144d。大部分多环芳烃表现为近源污染(220km),只对张家口地区产生污染,而Pyr、Chr及Flu的传输距离大于500 km,很可能会对污染北京的大气环境。
[Abstract]:Polycyclic aromatic hydrocarbons (PAHs), as a class of persistent toxic pollutants (PTS), have the potential for toxicity, bioaccumulation, hard-to-degrade, and long-distance migration of the atmosphere. Due to the incomplete combustion of the fuel, a large amount of PAHs is generated, and the physical and chemical properties of the PAHs determine that the PAHs are easy to be adsorbed on the surface of the particulate matter. Dust fall is an important part of the exchange of atmosphere and other environmental substances, and a part of PAHs is adsorbed, under the control of atmospheric circulation, the long-distance migration is carried out together, and finally the dust fall to the surface by the influence of gravity. The atmospheric aerosol is a fine particle suspended in the atmosphere with a diameter of less than 10 microns. The particles can adsorb a large amount of PAHs and have a long residence time in the atmosphere, and have a great effect on air quality and human health. As the aerosol and dust fall through the atmosphere, the air-water exchange enters the surrounding environment, which is not only a threat to the atmospheric environment but also a potential threat to the surface and surface water ecological environment. Since the water source is usually used as a natural reserve, the ecological fragile area and the industrial and agricultural water, in particular the residents' drinking water safety, the surrounding PAHs emission sources will be of great concern to the ecological environment of the water source, and become a new hot spot in the research field of PTS. The study is based on the Yanghe River basin, which is located in the northwest of Beijing, not only because of the hinterland of the basin-Zhangjiakou is an important old industrial base in the northern part of China, and has obvious characteristics of PAHs emission sources. But also because it is an important water source and ecological protection barrier in Beijing, as well as the typical agro-pastoral ecotone and ecological fragile sensitive area in the north of China, and it is also the sponsor of the 2022 Winter Olympic Games, with and important strategic position. In order to reflect the present situation of the pollution of the polycyclic aromatic hydrocarbons in the atmosphere of the Yanghe river basin, the emission factors of PAHs and the amount of the monomer in each industry and each county of the basin are estimated through the collection and analysis of the relevant data such as the river basin, the agricultural production and the resident's life. At the same time, the study has set up 20 sampling points in the Yanghe River Basin and Beijing, and represents the sampling of the aerosol and dust-reducing PAHs in the area of the grassland, the industrial area, the residential area, the water source and the Beijing urban area, from November 2013 to November 2014, In this paper, the space-time variation of PAHs in the atmosphere is analyzed, and the emission source of PAHs in the atmosphere is obtained by using the molecular marker and the principal component analysis. The results show that: (1) From the emission industry, the important emission source of the atmospheric PAHs in the Yanghe river basin is the coal combustion source, and the coal consumption of 90% of the Yanghe river basin is about 76% of the PAHs, of which the coal consumption of the industry (including power generation and heat supply) is 6.1-103t, and the emission of PAHs is 1.8-102t; The coal consumption of the household is 8.4 to 102t, and the generated PAHs emission amount is 1.2 to 102t. The PAHs produced by the straw combustion source are second only to the PAHs produced by the coal combustion source, and 6% of the straw burning amount in the Yanghe River basin produces 16% of PAHs. The proportion of the remaining sources of emissions is less than 10 per cent. From the emission area, Xuanhua County, due to the rapid economic development and the coal-based energy structure, has the largest amount of polycyclic aromatic hydrocarbons, which is about 49t; the second is Xingand County, about 29t, which is related to the transportation oil in the area and the coal burning in the household; the least is the whole county, From the emission spectrum, the low-ring (2-3 ring): PAHs emission is close to the emission of the high-ring molecule (4-6 ring). The emission of Nap is the highest, the contribution rate is 21%, which is related to heavy industry fuel, coal tar or metal smelting, and the contribution rate of Phe, Flu, Pyr and BaP accounts for 12%, 9.1%, 8.4% and 7.4%, respectively. (2) The experimental data show that the annual discharge of the aerosol in the Yanghe River Basin is 655 ~ 1689ng/ m3, and the annual average is 308 ~ 139ng/ m3. The content of the 16-PAHs in the aerosol is mainly low-ring and 1.3-fold higher than that of the high-ring molecule. The mean mass concentration of the 16-PAHs in the aerosol of the Yanghe river basin appeared in January, and the minimum value appeared in July, April and October. The lowest value of the concentration of the 16-PAHs in the aerosol is located at the sampling point of Xinghe County and Tianzhen County, and the highest value appears at the sampling point of the cicada's kiln village and the Beijing urban area. The difference of the geographical environment, the meteorological conditions and the different energy structure resulted in a significant spatial difference in the content of the 16PAHs in the aerosol, that is, the background point of the grassland in the residential area (1077ng/ m3) of the industrial area (1388ng/ m3) (1077ng/ m3) and the background point of the grassland in the area of 708ng/ m3) (374ng/ m3). (3) The emission of 16-PAHs in the dustfall of the Yanghe River basin is 503-2593 ng/ m2, and the annual average value is 1017-405ng/ m2. The time distribution of the 16-PAHs in the dust and the time distribution of the 16-PAHs in the aerosol show the consistency, and the mean value of the average mass concentration of the 16-PAHs in the dust is in January, and the minimum value is in July. From the spatial distribution, the lowest value of the 16-PAHs concentration in the dust fall is located at the sampling point of the post-white tiger store in the Beijing urban area, and the highest value appears at the sampling point of the cicada. There is also a great difference in the content of 16PAHs in the dust falling of each functional area. The annual mean value of the 16-PAHs in the dust-falling body shows the background point of the grassland in the industrial area (1729 ng/ m2) (1566 ng/ m2) and the water source area (1062 ng/ m2) of the residential area (1062 ng/ m2) in the urban area of Beijing (1389 ng/ m2). (4) The annual dust fall in the Yanghe River basin is in the range of 0.26-1.06 g/ m2, and the annual average value is 0.49/ 0.22/ m2. The dust fall in spring (April) is the largest, and the dust fall in winter (January) is the smallest. The highest value appears in Fangjiaozhuang, about 1.1 g/ m2, Batu Bay and the New Village in the Northeast of China with a minimum dust fall of 0.27 g/ m2. From the functional area, the annual dust fall is shown as follows: the area of the industrial area (0.62 g/ m2) (0.58g/ m2) (0.58g/ m2) of the grassland area (0.5g/ m2), and the pastoral area (0.32/ m2). (5) The source analysis and analysis show that the pollution sources of PAHs in the atmospheric aerosol and dust fall of the Yanghe River Basin are consistent, mainly related to the combustion of coal and related oil, namely, the combustion of biomass such as coal and wood, the combustion of diesel oil and the emission of gasoline engine, etc. In addition, the pollution of the research area and the heavy industry metal smelting, steel-making and other industrial production also have a certain contribution rate to the high-concentration PAHs. (6) The transmission distance of Pyr, Chr and Flu in 16 kinds of PAHs may pollute the atmospheric environment in Beijing. The migration distance of 16 kinds of PAHs in the atmosphere of the Yanghe River Basin is 13km (DBA) ~ 712km (Flu), the average value is 163 kmm, and the migration potential is the smallest 5-6-ring aromatic hydrocarbon with DBA and BghiP; the most potential for the migration is the 4-ring aromatic hydrocarbon, which is mainly Flu. The persistence was 0.33 d (Ace) to 907d (BaP); the average was 144d. Most of the polycyclic aromatic hydrocarbons appear to be near-source pollution (220 km), which only pollute the Zhangjiakou area, while the transmission distance of Pyr, Chr and Flu is more than 500km, which is likely to pollute the air environment in Beijing.
【学位授予单位】:兰州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X51

【参考文献】

相关期刊论文 前10条

1 李秋歌;赵欣;LIAN;高士祥;王格慧;王连生;;南京大气中多环芳烃的相分布[J];环境科学与技术;2007年04期

2 唐杨;徐志方;韩贵琳;;北京及其北部地区大气降尘时空分布特征[J];环境科学与技术;2011年02期

3 王伟;;鞍山市总悬浮颗粒物中多环芳烃分布特征[J];环境科学与管理;2013年01期

4 李军,张干,祁士华;广州市大气中多环芳烃分布特征、季节变化及其影响因素[J];环境科学;2004年03期

5 苏都尔·克热木拉;伊丽米热·阿布达力木;迪丽努尔·塔力甫;;乌鲁木齐市采暖期大气PM_(2.5-10)、PM_(2.5)中重金属和多环芳烃的分布及其相关性[J];环境化学;2013年04期

6 李淑贤;陆洪军;胡国成;邱洪斌;王嘉淇;沙靖全;刘凤华;孙广臣;;佳木斯郊区冬季大气PM2.5中多环芳烃的污染特征和健康风险评价[J];环境与健康杂志;2013年09期

7 高佳佳;罗维;奚晓霞;;首都水源地——洋河流域人为源多环芳烃(PAHs)排放清单估算及其影响分析[J];环境科学;2014年12期

8 黄云碧;周家斌;王铁冠;;北京地区大气颗粒物中不同功能区多环芳烃的分布特征[J];燃料化学学报;2007年02期

9 卜庆伟;张枝焕;夏星辉;;分子标志物参数在识别土壤多环芳烃(PAHs)来源中的应用[J];土壤通报;2008年05期

10 张春辉;郭建阳;石顺权;张亮;吴永贵;李江;杨少博;;贵阳市主干道降尘中的多环芳烃及其健康风险评估[J];生态学杂志;2014年10期

相关博士学位论文 前1条

1 马英歌;多环芳烃物理化学性质的确定及其在逸度模型和上海典型环境研究中的应用[D];上海交通大学;2009年

相关硕士学位论文 前3条

1 张婷婷;青岛市空气中多环芳烃的污染状况与源解析研究[D];中国海洋大学;2007年

2 邓琼;成都东郊大气颗粒物(TSP)中多环芳烃(PAHs)的污染研究[D];成都理工大学;2010年

3 柳杜娟;2010上海世博会期间大气细粒子中硝基多环芳烃的研究与比较[D];上海大学;2013年



本文编号:2503039

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/2503039.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8a7ae***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com