当前位置:主页 > 科技论文 > 环境工程论文 >

活性炭负载纳米零价铁的制备及其对难降解有机物去除性能的研究

发布时间:2019-06-26 21:07
【摘要】:本文针对纳米铁颗粒在去除污染物过程中易团聚、活性降低的问题,将纳米铁(NZVI)负载到活性炭载体上,制备出活性炭负载纳米铁(NZVI/AC)。选择三卤甲烷(THMs)和丙烯腈两种难降解有机污染物作为目标污染物,研究NZVI/AC在去除难降解有机物方面的性能,并对去除机理进行初步研究。本文主要进行了以下方面的研究:1.NZVI和NZVI/AC的制备和表征:采用液相还原法制备纳米铁(NZVI),以活性炭(AC)为载体制备负载型纳米铁NZVI/AC,并对AC、NZVI和NZVI/AC进行表征。NZVI、AC和NZVI/AC的结构形貌是用扫描电镜(SEM)和透射电镜(TEM)进行表征。通过傅里叶红外光谱仪(FT-IR).X-射线衍射仪(XRD)和X-射线光电子能谱(XPS)对样品的表面官能团、晶体结构和化学组成进行考察。比表面积测定仪和电子耦合等离子体原子发射光谱(ICP-AES)分别用来测定样品的比表面积、孔径和和铁元素含量。结果表明采用活性炭的承载作用和聚乙二醇-4000的分散作用,有效降低了纳米铁颗粒的团聚程度。SEM和TEM的结果证明了制备得到的负载纳米铁颗粒大小较为均匀,粒径在30-80 nm,铁颗粒大体呈球状形貌,部分分布在活性炭外表面上,部分进入活性炭的孔道内。NZVI的BET比表面积为25.8 m2/g,负载后NZVI/AC的比表面积为63.9 m2/g。NZVI/AC具有更大的比表面积和更高的活性。能谱EDS分析NZVI/AC颗粒表面Fe元素形态及含量,实验所得的结果与理论值(10%)相接近。XRD、FTIR和XPS的结果都证实了纳米零价铁成功地负载到了活性炭上,并且负载的纳米铁有良好的抗氧化能力,分散性更好。2.对比研究了NZVI、AC和NZVI/AC对三卤甲烷(THMs)的去除效果:并单独考察了NZVI/AC颗粒的投加量、反应时间和体系初始pH值对三卤甲烷去除效果的影响。结果表明对三卤甲烷的去除能力和去除速率大小依次为NZVI/ACNZVIAC和ACNZVI/ACNZVI。增加颗粒投加量有助于提高去除率,但当投加量增加到1.8 g/L后,去除效果的增加幅度不大。NZVI/AC的投加量为1.8 g/L, pH为中性时,对THMs的去除效果最好。实验结果证明了溴代甲烷比氯代甲烷容易去除,三卤甲烷的去除效果和去除速率遵循顺序CHBr3CHBr2ClCHBrCl2CHCl3。并且,实验结果也揭示了高溴取代数的三卤甲烷的去除率要比低溴取代数的三卤甲烷的去除率高(CHBr3CHBr2ClCHBrCl2).四种三卤甲烷的去除率均达到90%以上,其中CHBr3、CHBr2Cl、CHBrCl2和CHCl3的最高去除率分别为100%、97.8%、95%和94.5%。3.对比研究了活性炭负载纳米铁和活性炭对丙烯腈的去除效果:结果表明NZVI/AC对丙烯腈的去除效果高于AC,主要是由于活性炭本身对丙烯腈具有吸附作用,并且反应中生成的Fe2+、[H]和Fe0本身都具有很强的还原性,能够与丙烯腈发生反应。伪一级和伪二级动力学方程都不能很好地表述NZVI/AC去除丙烯腈的过程。Freundich模型能够更好的描述NZVI/AC对丙烯腈的吸附等温线,相关系数R20.998。通过紫外可见分光光度法和傅里叶红外谱图的分析可知,NZVI/AC可以分解丙烯腈分子,主要是由于反应产生的自由氢基[H]和新生成的Fe2+与丙烯腈之间的化学氧化还原作用。采用活性污泥耗氧速率的测定对活性污泥活性进行测定,结果表明经过NZVI/AC的预处理可以提高丙烯腈废水的可生化性,降低其对活性污泥的毒性。
[Abstract]:In this paper, the nano-iron (NZVI) loaded on the activated carbon carrier was prepared by loading the nano-iron (NZVI) on the activated carbon carrier, and the nano-iron (NZVI/ AC) was prepared by loading the nano-iron (NZVI) on the activated carbon carrier. The properties of non-degradable organic pollutants of trihalomethane (THMs) and acrylonitrile were selected as target pollutants, and the removal mechanism was studied. The preparation and characterization of NZVI and NZVI/ AC were studied in this paper. The nano-iron (NZVI) was prepared by a liquid-phase reduction method, and the supported nano-iron NZVI/ AC was prepared by using active carbon (AC) as a carrier, and the AC, NZVI and NZVI/ AC were characterized. The structure and morphology of NZVI, AC and NZVI/ AC were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface functional group, crystal structure and chemical composition of the sample were investigated by means of Fourier transform infrared (FT-IR), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS). The specific surface area, pore size and iron element content of the sample were determined by the specific surface area tester and the electron-coupled plasma atomic emission spectrometry (ICP-AES), respectively. The results show that the loading action of the activated carbon and the dispersion of the polyethylene glycol-4000 effectively reduce the degree of agglomeration of the nano-iron particles. The results of SEM and TEM show that the prepared supported nano-iron particles have a uniform size, a particle size of 30-80nm, and the iron particles are in a spherical shape, and are partially distributed on the outer surface of the active carbon and partially enter the pore canal of the active carbon. The BET specific surface area of NZVI was 25.8 m2/ g, and the specific surface area of NZVI/ AC after loading was 63.9 m2/ g. NZVI/ AC had a greater specific surface area and higher activity. The morphology and content of Fe element in the surface of NZVI/ AC particles were analyzed by energy spectrum EDS, and the experimental results were close to the theoretical value (10%). The results of XRD, FTIR and XPS all confirmed that the nano-valent iron was successfully loaded on the activated carbon, and the loaded nano-iron had good anti-oxidation ability and better dispersibility. The effect of NZVI, AC and NZVI/ AC on the removal of trihalomethane (THMs) was studied. The effects of the dosage, reaction time and initial pH of NZVI/ AC on the removal of trihalomethane were investigated. The results show that the removal and removal rate of trihalomethane are NZVI/ ACNZVIAC and ACNZVI/ ACNZVI. Increasing the dosage of the particles helps to improve the removal rate, but when the dosage is increased to 1.8 g/ L, the increase of the removal effect is not large. When the dosage of NZVI/ AC is 1.8 g/ L and the pH is neutral, the removal effect of the THMs is the best. The experimental results show that the bromomethane is easier to remove than the chloromethane, and the removal effect and the removal rate of the trihalomethane follow the order of CHBr3CHBr2ClCHBrCl2CHCl3. Furthermore, the experimental results also show that the removal rate of the trihalomethane with the high bromine number is higher than that of the low bromine number of the trihalomethane (CHBr3CHBr2ClCHBrCl2). The removal rate of the four trihalomethane was over 90%, and the highest removal rates of CHBr3, CHBr2Cl, CHBrCl2 and CHCl3 were 100%, 97.8%,95% and 94.5% respectively. The effect of activated carbon loaded iron and active carbon on the removal of acrylonitrile was studied. The results showed that the effect of NZVI/ AC on the removal of acrylonitrile was higher than that of AC, mainly due to the adsorption of the activated carbon itself on the acrylonitrile, and the Fe 2 + generated in the reaction. [H] and Fe0 itself have very strong reducibility and can react with acrylonitrile. Both the pseudo-first and the pseudo-second-order kinetic equations do not well state the process of removing the acrylonitrile from the NZVI/ AC. The Freundich model can better describe the adsorption isotherm of NZVI/ AC to acrylonitrile, and the correlation coefficient R20.98. It is known from the analysis of the UV-visible spectrophotometry and the Fourier infrared spectroscopy that the NZVI/ AC can decompose the acrylonitrile molecule, mainly due to the free hydrogen group[H] produced by the reaction and the chemical oxidation reduction effect between the newly formed Fe 2 + and the acrylonitrile. The activity of activated sludge was determined by the determination of the oxygen consumption rate of activated sludge. The results showed that the pretreatment of NZVI/ AC could improve the biodegradability of acrylonitrile wastewater and reduce its toxicity to activated sludge.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X703;TQ424.1

【相似文献】

相关期刊论文 前10条

1 张鑫;陈祖亮;;固定化纳米铁修复水环境的研究进展[J];科技情报开发与经济;2010年22期

2 曾伟文;北京科学家研制成功“纳米铁纸”[J];粉末冶金工业;2005年03期

3 亓家钟;纳米铁治癌法[J];粉末冶金技术;2005年05期

4 熊平,郭萍,袁亚莉,何继善;顺磁纳米铁核素的研制及性能分析[J];中国生物医学工程学报;2005年02期

5 罗驹华;张振忠;张少明;;气相法制备纳米铁颗粒新进展[J];材料导报;2007年S1期

6 商伟赞;李新霞;郭萍;;微血管中纳米铁核素的输运及收集效果分析[J];南华大学学报(自然科学版);2008年02期

7 刘炳晶;金朝晖;李铁龙;安毅;李淑静;王薇;;包覆型纳米铁的制备及对三氯乙烯的降解研究[J];环境科学;2009年01期

8 王雪;丁庆伟;刘宏芳;钱天伟;;不同分散剂作用下制备纳米铁及表征[J];太原科技大学学报;2010年05期

9 高树梅;张跃进;陈云云;黄炎杰;;水处理应用中纳米铁颗粒的制备方法综述[J];嘉兴学院学报;2011年03期

10 张玉荣;吴杰;朱慧杰;张奎;;纳米铁负载材料应用研究[J];河南城建学院学报;2012年01期

相关会议论文 前10条

1 李铁龙;金朝晖;刘海水;康海燕;刘振英;;纳米铁制备及其去除硝酸盐氮研究[A];第三届全国环境化学学术大会论文集[C];2005年

2 孙克宁;;微波合成法制备纳米铁酸镧及其在中温固体氧化物燃料电池中应用[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年

3 耿兵;金朝晖;李铁龙;刘丽娟;李勇超;;壳聚糖修饰纳米铁的制备与去除水体中六价铬污染的研究[A];中国化学会第26届学术年会环境化学分会场论文集[C];2008年

4 方婧;单孝全;温蓓;;菲在工业纳米铁、铜和二氧化硅上的吸附与解吸研究[A];中国化学会第26届学术年会环境化学分会场论文集[C];2008年

5 张选军;戴友芝;张慧;宋勇;;超声波协同纳米铁降解2,4-二氯苯酚的研究[A];2005中国可持续发展论坛——中国可持续发展研究会2005年学术年会论文集(下册)[C];2005年

6 李铁龙;王学;金朝晖;;不同状态下纳米铁对细胞毒性机制研究[A];第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集[C];2011年

7 李闪;卫建军;;OA-Pluronic包覆纳米铁在水中的稳定性研究[A];第五届全国环境化学大会摘要集[C];2009年

8 张耘;李益民;李建法;;改性膨润土负载纳米铁去除废水中环境污染物的研究[A];第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集[C];2011年

9 殷其亮;李筱琴;肖阳;;零价纳米铁在多孔介质中的迁移研究[A];2012中国环境科学学会学术年会论文集(第四卷)[C];2012年

10 钱方针;郭守柱;蒋冬梅;张卫国;姜继森;;镝掺杂纳米铁酸铋的溶胶-凝胶法制备及其多铁性质的研究[A];中国化学会第十二届胶体与界面化学会议论文摘要集[C];2009年

相关重要报纸文章 前3条

1 李东;纳米铁锈可根除水中砷污染[N];中国石油报;2006年

2 世杰;“神六”飞船有望用上“纳米铁纸”[N];中国有色金属报;2005年

3 本报记者 张亮;纳米铁锈可根除水中砷污染[N];科技日报;2006年

相关博士学位论文 前10条

1 耿兵;壳聚糖稳定纳米铁的制备与修复地表水中六价铬污染的研究[D];南开大学;2009年

2 王薇;包覆型纳米铁的制备及用于地下水污染修复的实验研究[D];南开大学;2008年

3 李勇超;功能化核壳型纳米铁的制备及修复地下水中六价铬的研究[D];南开大学;2012年

4 肖仕丽;静电纺零价纳米铁/聚合物材料的制备、表征及其环境修复应用[D];东华大学;2010年

5 熊平;旋转磁场对血流中纳米铁核素定位作用的理论研究[D];中南大学;2009年

6 史嘉璐;含吡啶基螯合树脂负载纳米铁系金属选择性还原硝酸盐的特性和机理[D];南京大学;2015年

7 李铁龙;纳米铁及铁钯复合材料的制备与修复地下水基础研究[D];南开大学;2006年

8 张环;负载型纳米铁铜二元金属的合成与改性及其修复地下水中有机氯污染物的基础研究[D];南开大学;2006年

9 郭萍;顺磁纳米铁核素(PNINs)的物理靶向和富集特征研究[D];中南大学;2010年

10 柳听义;包埋型纳米铁(NZVI)的制备及其去除废水中铬(Cr(Ⅵ))的研究[D];天津大学;2011年

相关硕士学位论文 前10条

1 代佳丽;纳米铁烧结活性碳的制备及性能研究[D];华南理工大学;2015年

2 王倩;修饰型纳米铁制备及其用于水体复合污染物去除研究[D];中国地质大学(北京);2015年

3 肖佳楠;活性炭负载纳米零价铁的制备及其对难降解有机物去除性能的研究[D];山东大学;2015年

4 肖庆;纳米铁氧化矿物吸/脱附Cr(Ⅵ)的实验研究[D];上海大学;2015年

5 侯春凤;纳米铁与合成树脂的表征及其活性探讨[D];北京交通大学;2009年

6 李晨桦;膨润土负载纳米铁去除地下水中六价铬研究[D];中国地质大学(北京);2012年

7 白雪梅;树脂改性纳米铁修复铅污染地下水的研究[D];吉林大学;2015年

8 陈学刚;纳米铁粒子/炭材料的制备和性能研究[D];北京化工大学;2001年

9 付明庆;纳米铁及负载型纳米铁去除硝酸盐的试验研究[D];沈阳建筑大学;2013年

10 王斐;纳米铁铜复合材料去除地下水中硝酸盐的研究[D];中国海洋大学;2014年



本文编号:2506493

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/2506493.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e8470***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com