当前位置:主页 > 科技论文 > 化学工程论文 >

陕西黄土高原刺槐枯落叶生态化学计量学特征

发布时间:2016-09-30 12:20

  本文关键词:陕西黄土高原刺槐枯落叶生态化学计量学特征,由笔耕文化传播整理发布。


DOI: 10.5846/stxb201306101562

陕西黄土高原刺槐枯落叶生态化学计量学特征?

陈亚南1,马露莎1,张向茹1,杨佳佳1,安韶山2,*

(1. 西北农林科技大学 资源环境学院, 陕西杨陵 712100;

2. 西北农林科技大学 黄土高原土壤侵蚀与旱地农业国家重点实验室, 陕西杨陵 712100)

摘要: 生态系统元素平衡是当前全球变化生态学和生物地球化学循环研究的焦点和热点,生态化学计量学结合了生物学、物理学和化学等基本原理,是研究生物系统能量平衡与多重化学元素平衡的科学,为研究元素在生物地球化学循环与生态过程中的规律及其之间的计量关系提供了一种综合的方法。本研究以陕西黄土高原人工刺槐林为研究对象,结合纬度和坡向两个因素,分析了三原、淳化、耀州区、宜君、黄陵、洛川、富县、甘泉、宝塔区、安塞、米脂、神木12个县区的刺槐枯落叶生态化学计量学特征。结果发现,阳坡刺槐枯落叶C、N、P含量的变化范围分别为318.34—428.01 g/kg、13.27—24.07 g/kg、1.66—2.57 g/kg;阴坡刺槐枯落叶C、N、P含量的变化范围分别为306.70—433.68 g/kg、12.55—24.39 g/kg、1.62—2.99 g/kg。阳坡刺槐枯落叶C:N、C:P、N:P的变化范围分别为14.23—24.61、148.67—215.92、7.37—14.47;阴坡刺槐枯落叶C:N、C:P、N:P的变化范围分别为16.87—26.54、130.06—234.41、7.05—13.22。随着纬度的升高,刺槐枯落叶C、N显著下降,刺槐枯落叶P、C: N、C:P、N:P无明显差异。刺槐枯落叶C、N、P之间呈显著正相关。刺槐枯落叶C、N、P、C:N、C:P、N:P在阴坡和阳坡之间无明显差异。本研究区,阴坡和阳坡的刺槐枯落叶N:P均较低,刺槐林土壤的全氮平均含量也低于全国平均水平,推测陕西黄土高原刺槐林的生长可能主要受到氮素的限制。

关键词:黄土高原;刺槐;枯落叶;生态化学计量学;纬度;坡向

Ecological stoichiometry characteristics of leaf litter of Robinia pseudoacacia in the Loess Plateau of Shaanxi Province

CHEN Yanan1, MA Lusha1, ZHANG Xiangru1, YANG Jiajia1, AN Shaoshan2,*

1 College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China

2 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China Abstract: The balance between various elements of the ecosystem has been the focus of research related to the ecology of global change and biogeochemical cycles. Ecological stoichiometry is the study of the balance of energy and elements in biological systems and is based on the general laws of physics, chemistry and biology. Ecological stoichiometry provides an integrated approach to investigating the stoichiometric relationships and rules in biogeochemical cycling and ecological processes. Robinia pseudoacacia, a leguminous tree, is the main species used for afforestation in the Loess Plateau of China. R. pseudoacacia has some special features, such as a rapid growth, being easy to propagate, being very 基金项目:国家自然科学基金面上项目(41171226); 教育部新世纪优秀人才支持计划(NCET-12-0473); 西北农林科技大学“优秀人才科研专项(QN2011049)”资助

* 通讯作者Corresponding author. E-mail: shan@ms.iswc.ac.cn

adaptable to various environmental conditions and an strong ability to fix nitrogen in a biologically useful form, allowing it to be widely planted in the Loess Plateau. To explore ecological stoichiometric characteristics of leaf litter of R. pseudoacacia in the Loess Plateau, R. pseudoacacia forests scattered across 12 counties (listed below) on both sunny and shady slopes were selected for study. Data were collected at each site on latitude, slope and aspect, light conditions, temperature, water and soil conditions. The C, N, and P contents of R. pseudoacacia leaf litter were studied from sites scattered from south to north in the Loess Plateau of Shaanxi Province, including Sanyuan, Chunhua, Yaozhou, Yijun, Huangling, Luochuan, Fuxian, Ganquan, Baota, Ansai, Mizhi and Shenmu counties. The results showed that C, N, and P contents of R. pseudoacacia leaf litter from sites on sunny slopes range from 318.34 to 428.01 g/kg, 13.27 to 24.07 g/kg, and 1.66 to 2.57 g/kg, respectively. Leaf litter C, N, P content of shady slopes ranged from 306.70 to 433.68 g/kg, 12.55 to 24.39 g/kg, and 1.62 to 2.99 g/kg, respectively. Leaf litter C:N, C:P, N:P ratios on sunny slopes ranged from 14.23 to 24.61, 148.67 to 215.92, and 7.37 to 14.47, respectively. Leaf litter C:N, C:P, N:P ratios on shady slopes ranged from 16.87 to 26.54, 130.06 to 234.41, and 7.05 to 13.22, respectively. C and N contents decreased significantly in R. pseudoacacia leaf litter with increasing latitude in the 12 counties, although P content in the leaf litter did not change significantly among the 12 counties. The same trend was observed between R. pseudoacacia leaf litter and soil when latitude increased. The C, N and P content in R. pseudoacacia leaf litter were positively correlated to each other. The C:N, C:P, N:P ratios were not significantly different in R. pseudoacacia leaf litter among the 12 counties with increasing latitude. Slope aspect had no effect on the C, N and P content of R. pseudoacacia leaf litter and soil. The leaf N:P ratio can be used as an ecological indicator for shortages of these two nutrients at the individual plant and community levels. In this research, the ratios of N:P in R. pseudoacacia leaf litter on both sunny and shady slopes were small. In addition, the soil N content of this study area was less than average for all of China, which implies that available N was the main factor limiting the distribution of R. pseudoacacia in the Loess Plateau of Shaanxi Province. Further research should be conducted to determine whether this conclusion can be applied over a broader spatial scale.

Key words: Loess Plateau; Robinia pseudoacacia; leaf litter; ecological stoichiometry; latitude; slope aspect

生态化学计量学结合了生物学、物理学和化学等基本原理,是研究生物系统能量平衡与多重化学元素(主要是C、N、P)平衡的一门学科 [1],目前,已广泛应用于种群动态、生物体营养动态、微生物营养、寄主—病原关系、生物共生关系、消费者驱动的养分循环、限制性元素的判断、生态系统比较分析和森林演替与衰退及全球C、N、P生物地球化学循环等研究[2]。

枯落物是森林生态系统的重要组分,在营养循环、水源涵养、水土保持以及碳的固定等方面发挥着重要的生态功能[3]。枯落物的凋落和分解是森林生态系统养分循环的基本过程,与土壤养分的累积、植物自身养分的吸收调控密切联系,枯落物的养分状况在一定程度上反映了土壤的养分供应

状况以及植物的养分利用状况。研究枯落物的生态化学计量学特征对于揭示生态系统各组分之间的养分循环规律,阐明系统的稳定性以及促进生态化学计量学理论的发展具有重要的意义。

黄土高原是我国水土流失最为严重的地区之一,生态环境极其脆弱,直接影响了黄河流域的生态安全。为了改善黄土高原的生态环境,以退耕还林还草为核心的生态环境建设迅速展开 [4]。作为 生态恢复与重建的主要手段,人工植被恢复对改善土壤性质有着显著作用[5-7]。刺槐(Robinia

pseudoacacia)作为黄土高原主要造林树种之一,由于生长快、适应性强、繁殖容易、固氮等特点[8-9],20世纪70年代末至80年代初,得到大面积栽植,为改善生态环境、调节黄河流域的水文状况起到了关键作用[10]。目前,黄土高原针对刺槐的研究,主要集中在刺槐的生长特性[11-16]、刺槐对土壤的水

而涉及刺槐生态化学计量学方面的研究较少[22]。纬度和坡向代表了不同的文效应及养分效应[17-21],

光照、温度、水分和土壤条件[23-24],目前,国内关于纬度、坡向对植物叶片生态化学计量学特征影响的研究相对较少 [25-29],而结合纬度和坡向对植物枯落叶的研究还未曾报道。本文以陕西黄土高原从南到北12个县区的人工刺槐林为研究对象,探讨了阴坡和阳坡刺槐枯落叶C、N、P的生态化学计量特征,有助于阐明生态系统C、N、P平衡的元素化学计量比格局和C、N、P元素之间的相互关系,为黄土高原生态系统养分循环的驱动机制奠定了基础,也为中国大区域尺度的元素计量学特征、陆地生态系统的生物地球化学循环提供了科学依据。

1 研究地区与研究方法

1. 1 研究区概况

研究区位于黄土高原中部,采样点由南向北分别为三原、淳化、耀州区、宜君、黄陵、洛川、富县、甘泉、宝塔区、安塞、米脂、神木(图1)。该研究区域位于中纬度温带,34°43’—38°49’N,108°49’—110°22’E,海拔853—1338 m,地貌为黄土塬梁丘陵沟壑地貌。年平均气温7—9 ℃,年降雨量350—650 mm,温度和降雨量由南到北递减,具有明显的地域性差异。

图1 采样点分布

Figure.1 Distribution of sample sites

1. 2 样地设置与取样

通过大量查阅刺槐相关文献资料以及走访陕西省林业相关部门领导及各地老农,于2011年8月确定了采样点。为保证各采样点的一致性,采样时间选择了刺槐生长的茂盛时期,各样点均选取林相整齐、林木分布较均匀、坡位一致的人工刺槐林(平均林龄20年)为研究对象。每个采样点设置阴阳两个坡面,每个坡面设置2个10 m×10 m的大样方,在每个大样方内从坡上到坡下按照“S”型5点法选择1 m×1 m的小样方,重复2次,并在小样方内挑选出刺槐的枯落叶(包括可辨认的半腐解部分),分别混匀,四分法取部分装入牛皮纸袋;土壤的采集与枯落叶的采集相对应,用土钻从坡上到坡下按照“S”型5点法取0—10 cm土层,重复2次,充分混匀后用四分法取部分装入塑封袋带回。各采样点概况及林分状况(分别见表1和表2)。

表1 样地概况

Table 1 Survey of the plots

采样点

Sample site 坡向 Slope aspect 经度 Longitude(E)纬度 Latitude(N) 海拔 Altitude

/m

三原

Sanyuan

淳化

Chunhua

耀州区

Yaozhou

宜君

Yijun

黄陵

Huangling

洛川

Luochuan

富县

Fuxian

甘泉

Ganquan

宝塔区 阳坡 108°49′29.69″阴坡 108°49′38.59″阳坡 108°39′17.69″阴坡 108°39′26.13″阳坡 108°59′36.08″阴坡 108°59′18.31″坡位 Slope position 坡度 Gradient /(°) 34°43′37.79″ 935 中坡 32 34°43′41.65″ 852 中坡 24 34°55′4.21″ 1318 中坡 33 34°55′0.91″ 1325 中坡 23 35°00′0.85″ 824 中坡 30 35°00′14.12″ 882 中坡 31 阳坡 109°04′3.13″ 35°16′27.18″ 1384 中坡 26 阴坡 109°04′5.65″ 35°16′28.4″ 1292 中坡 34 阳坡 109°14′34.79″阴坡 109°14′54.15″阳坡 109°26′22.66″阴坡 109°26′13.31″阳坡 109°25′28.83″阴坡 109°25′46.96″阳坡 109°24′44.03″阴坡 109°24′34.83″阳坡 109°09′48.48″35°33′46.02″ 969 中坡 13 35°34′57.52″ 893 中坡 20 35°42′33.7″ 1003 中坡 23 35°42′30.64″ 1041 中坡 29 35°59′58.1″ 1015 中坡 31 35°59′58.63″ 1040 中坡 20 36°21′22.08″ 1132 中坡 21 36°21′27.94″ 1109 中坡 18 36°41′41.12″ 1181 中坡 25


  本文关键词:陕西黄土高原刺槐枯落叶生态化学计量学特征,由笔耕文化传播整理发布。



本文编号:127130

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/127130.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a98f8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com