光电化学传感器的构建及应用
本文关键词:光电化学传感器的构建及应用,由笔耕文化传播整理发布。
全文:
(1577 KB)
(1 KB)
输出: BibTeX | EndNote (RIS)
摘要
光电化学分析是基于光电化学过程和化学/生物识别过程建立起来的一种新的分析方法。该方法以光作为激发信号,以光电流作为检测信号,具有灵敏度高、响应快速、设备简单和易微型化等优点,在生物和环境等分析领域受到了广泛关注。电极表面修饰的光电层在吸收光子后被激发,所产生的载流子发生电荷分离和电子迁移,进而产生光电流。通过在光电层上进一步修饰传感识别单元,,利用直接氧化还原、分子识别与结合、酶催化等方法所导致的光电流的变化与待测分子之间的数量关系,可实现对目标物的定量分析。因此,光电化学传感器在功能结构上包括光电转换单元和传感识别单元两部分,光电层的材料选择和传感识别策略是光电化学传感器构建的两大关键点。本文在对光电化学传感器基本原理及应用领域总结的基础上,对光电化学传感器的材料选择和传感模式进行了分析和综述。
服务
E-mail Alert
RSS
收稿日期: 2013-10-01 出版日期: 2014-03-13
PACS: O657.1
TP212.2
O649.3
基金资助:
国家自然科学基金项目(No. 21375079,21105056)资助
通讯作者: 艾仕云,e-mail:ashy@sdau.edu.cn E-mail: ashy@sdau.edu.cn
引用本文:
孙兵, 艾仕云. 光电化学传感器的构建及应用[J]. 化学进展, 2014, 26(05): 834-845.
Sun Bing, Ai Shiyun. Fabrication and Application of Photoelectrochemical Sensor. Progress in Chemistry, 2014, 26(05): 834-845.
链接本文:
或
[1] Becquerel A E. C. R. Acad. Sci.,1839, 9: 145.
[2] Brattain W, Garrett C. Bell Syst. Tech. J., 1955, 34: 129.
[3] Dewald J. J. Phys. Chem. Solids, 1960, 14: 155.
[4] Gerischer H. J. Electrochem. Soc., 1966, 113: 1174.
[5] Kolb D, Przasnyski M, Gerischer H. J. Electroanal. Chem. Interfacial Electrochem., 1974, 54: 25.
[6] Fujishima A, Honda K. Nature,1972, 238: 37.
[7] Gratzel M. Nature, 2001, 414: 338.
[8] Zhang X, Guo Y, Liu M, Zhang S. RSC Adv., 2013, 3: 2846.
[9] Ham M H, Choi J H, Boghossian A A, Jeng E S, Graff R A, Heller D A, Chang A C, Mattis A, Bayburt T H, Grinkova Y V, Zeiger A S, Van Vliet K J, Hobbie E K, Sligar S G, Wraight C A, Strano M S. Nat. Chem., 2010, 2: 929.
[10] 张兆霞(Zhang Z X), 赵常志(Zhao C Z). 分析化学(Chin. J. Anal. Chem.), 2013, 41: 436.
[11] Tan M X, Laibinis P E, Nguyen S T, Kesselman J M, Stanton C E, Lewis N S. Prog. Inorg. Chem., 1994, 41: 21.
[12] 柳闽生(Liu M S), 杨迈之(Yang M Z). 化学通报(Chemistry), 1997, 20.
[13] Lin Y, Yuan G, Liu R, Zhou S, Sheehan S W, Wang D. Chem. Phys. Lett., 2011, 507: 209.
[14] Cohen C B, Weber S G. Anal. Chem., 1993, 65: 169.
[15] Licht S. Colloids Surf. A, 1998, 134: 231.
[16] 门洪(Men H), 胡德建(Hu D J), 穆胜伟(Mu S W), 靳继勇(Jin J Y), 王伟广(Wang W G). 传感器与微系统 (Transducer and Microsystem Technologies), 2008, 27: 12.
[17] 彭芳(Peng F), 朱德荣(Zhu D R), 司士辉(Si S H), 肖辉(Xiao H). 化学进展(Progress in Chemistry), 2008, 20: 586.
[18] Liang M, Jia S, Zhu S, Guo L H. Environ. Sci. Technol., 2008, 42: 635.
[19] 王光丽(Wang G L), 徐静娟(Xu J J), 陈洪渊(Chen H Y). 中国科学: 化学(Scientia Sinica Chimica), 2009, 39: 1336.
[20] Sun B, Zhang K, Chen L, Guo L, Ai S. Biosens. Bioelectron., 2013, 44: 48.
[21] Wang G L, Xu J J, Chen H Y. Biosens. Bioelectron., 2009, 24: 2494.
[22] Wang K, Wu J, Liu Q, Jin Y, Yan J, Cai J. Anal. Chim. Acta, 2012, 745: 131.
[23] Zhao X, Zhou S, Shen Q, Jiang L P, Zhu J J. Analyst, 2012, 137: 3697.
[24] Tang J, Kong B, Wang Y, Xu M, Wang Y, Wu H, Zheng G. Nano Lett., 2013, 13: 5350.
[25] Wang G L, Xu J J, Chen H Y, Fu S Z. Biosens. Bioelectron., 2009, 25: 791.
[26] An Y, Tang L, Jiang X, Chen H, Yang M, Jin L, Zhang S, Wang C, Zhang W. Chem. Eur. J., 2010, 16: 14439.
[27] Li Q W, Luo G A, Feng J, Cai D W, Ouyang Q. Analyst, 2000, 125: 1908.
[28] Willner I, Patolsky F, Wasserman J. Angew. Chem. Int. Ed., 2001, 40: 1861.
[29] Gao Z, Tansil N C. Nucleic Acids Res., 2005, 33: e123.
[30] Lu W, Jin Y, Wang G, Chen D, Li J. Biosens. Bioelectron., 2008, 23: 1534.
[31] Zhang X, Xu Y, Zhao Y, Song W. Biosens. Bioelectron., 2013, 39: 338.
[32] Wu Y, Zhang B, Guo L H. Anal. Chem., 2013, 85: 6908.
[33] Zhu Y, Cao H, Tang L, Yang X, Li C. Electrochim. Acta, 2009, 54: 2823.
[34] Chen D, Zhang H, Li X, Li J. Anal. Chem., 2010, 82: 2253.
[35] Du J, Yu X, Wu Y, Di J. Mater. Sci. Eng. C, 2013, 33: 2031.
[36] Haddour N, Chauvin J, Gondran C, Cosnier S. J. Am. Chem. Soc., 2006, 128: 9693.
[37] Yao W J, Le Goff A, Spinelli N, Holzinger M, Diao G W, Shan D, Defrancq E, Cosnier S. Biosens. Bioelectron., 2013, 42: 556.
[38] Zhao W W, Dong X Y, Wang J, Kong F Y, Xu J J, Chen H Y. Chem. Commun., 2012, 48: 5253.
[39] Qian Z, Bai H J, Wang G L, Xu J J, Chen H Y. Biosens. Bioelectron., 2010, 25: 2045.
[40] Zhao W W, Zhang L, Xu J J, Chen H Y. Chem. Commun., 2012, 48: 9456.
[41] Zhao X, Zhou S, Jiang L P, Hou W, Shen Q, Zhu J J. Chem. Eur. J., 2012, 18: 4974.
[42] Liu F, Zhang Y, Yu J, Wang S, Ge S, Song X. Biosens. Bioelectron., 2014, 51: 413.
[43] Zen J M, Song Y S, Chung H H, Hsu C T, Senthil Kumar A. Anal. Chem., 2002, 74: 6126.
[44] Wang C, Wu J, Wang P, Ao Y, Hou J, Qian J. Anal. Chim. Acta, 2013, 767: 141.
[45] Zhang S, Li L, Zhao H. Environ. Sci. Technol., 2009, 43: 7810.
[46] Mu Q, Li Y, Wang H, Zhang Q. CrystEngComm, 2011, 13: 6258.
[47] Kang Q, Yang L, Chen Y, Luo S, Wen L, Cai Q, Yao S. Anal. Chem., 2010, 82: 9749.
[48] Zhou Q, Zhang S, Yang X, Wu Q, Zhao H, Wu M. Sens. Actuators B, 2013, 186: 132.
[49] Han D M, Ma Z Y, Zhao W W, Xu J J, Chen H Y. Electrochem. Commun., 2013, 35: 38.
[50] Chamier J, Leaner J, Crouch A M. Anal. Chim. Acta, 2010, 661: 91.
[51] Li H, Li J, Wang W, Yang Z, Xu Q, Hu X. Analyst, 2013, 138: 1167.
[52] Li H, Li J, Yang Z, Xu Q, Hu X. Anal. Chem., 2011, 83: 5290.
[53] Sun B, Chen L, Xu Y, Liu M, Yin H, Ai S. Biosens. Bioelectron., 2013, 51: 164.
[54] Gill R, Zayats M, Willner I. Angew. Chem. Int. Ed., 2008, 47: 7602.
[55] Wang G, Xu J, Chen H. Science China: Chemistry, 2009, 52: 1789.
[56] Weber S G, Morgan D M, Elbicki J M. Clin. Chem., 1983, 29: 1665.
[57] Dong D, Zheng D, Wang F Q, Yang X Q, Wang N, Li Y G, Guo L H, Cheng J. Anal. Chem., 2004, 76: 499.
[58] Gao Z, Tansil N C. Nucleic Acids Res., 2005, 33: e123.
[59] Raymond J E, Bhaskar A, Goodson T, Makiuchi N, Ogawa K, Kobuke Y. J. Am. Chem. Soc., 2008, 130: 17212.
[60] Wang W, Shan D, Yang Y, Wang C, Hu Y, Lu X. Chem. Commun., 2011, 47: 6975.
[61] Ikeda A, Nakasu M, Ogasawara S, Nakanishi H, Nakamura M, Kikuchi J. Org. Lett., 2009, 11: 1163.
[62] Yamada H, Tanabe K, Nishimoto S. Org. Biomol. Chem., 2008, 6: 272.
[63] Pandey P C, Weetall H H. Anal. Chem., 1994, 66: 1236.
[64] Hu Y, Xue Z, He H, Ai R, Liu X, Lu X. Biosens. Bioelectron., 2013, 47: 45.
[65] Tran T T, Li J, Feng H, Cai J, Yuan L, Wang N, Cai Q. Sens. Actuators B, 2013, 190: 745.
[66] Shankar K, Basham J I, Allam N K, Varghese O K, Mor G K, Feng X, Paulose M, Seabold J A, Choi K S, Grimes C A. J. Phys. Chem. C, 2009, 113: 6327.
[67] Su J, Feng X, Sloppy J D, Guo L, Grimes C A. Nano Lett., 2010, 11: 203.
[68] Tu W, Dong Y, Lei J, Ju H. Anal. Chem., 2010, 82: 8711.
[69] Cai J, Sheng P, Zhou L, Shi L, Wang N, Cai Q. Biosens. Bioelectron., 2013, 50: 66.
[70] Li H, Li J, Xu Q, Hu X. Anal. Chem., 2011, 83: 9681.
[71] Yang Y, Wen J, Wei J, Xiong R, Shi J, Pan C. ACS Appl. Mater. Interfaces, 2013, 5: 6201.
[72] Li X, Hu C, Zhao Z, Zhang K, Liu H. Sens. Actuators B, 2013, 182: 461.
[73] Yue Z, Lisdat F, Parak W J, Hickey S G, Tu L, Sabir N, Dorfs D, Bigall N C. ACS Appl. Mater. Interfaces, 2013, 5: 2800.
[74] Sheeney-Haj-Ichia L, Basnar B, Willner I. Angew. Chem. Int. Ed., 2005, 44: 78.
[75] Morozov S, Novoselov K, Katsnelson M, Schedin F, Elias D, Jaszczak J, Geim A. Phys. Rev. Lett., 2008, 100: 016602.
[76] Wei L, Tezuka N, Umeyama T, Imahori H, Chen Y. Nanoscale, 2011, 3: 1845.
[77] 王娟(Wang J), 刘颖(Liu Y), 张伟德(Zhang W D). 化学进展(Progress in Chemistry), 2011, 23: 1583.
[78] Wang K, Liu Q, Dai L, Yan J, Ju C, Qiu B, Wu X. Anal. Chim. Acta, 2011, 695: 84.
[79] Zhao X, Zhou S, Shen Q, Jiang L P, Zhu J J. Analyst, 2012, 137: 3697.
[80] Li Y J, Ma M J,Yin G, Kong Y, Zhu J J. Chem. Eur. J., 2013, 19: 4496.
[81] Yan J, Wang K, Liu Q, Qian J, Dong X, Liu W, Qiu B. RSC Adv., 2013, 3: 14451.
[82] Zheng H, Ou J Z, Strano M S, Kaner R B, Mitchell A, Kalantar Zadeh K. Adv. Funct. Mater., 2011, 21: 2175.
[83] Luo J, Hepel M. Electrochim. Acta, 2001, 46: 2913.
[84] Zhang X, Li L, Peng X, Chen R, Huo K, Chu P K. Electrochim. Acta, 2013, 108: 491.
[85] Peter L M, Wijayantha K G U, Riley D J, Waggett J P. J. Phys. Chem. B, 2003, 107: 8378.
[86] 王艳(Wang Y), 黄剑锋(Huang J F), 曹丽云(Cao L Y), 吴建鹏(Wu J P), 贺海燕(He H Y). 陶瓷(Ceramics), 2010, 19.
[87] Yin H, Sun B, Zhou Y, Wang M, Xu Z, Fu Z, Ai S. Biosens. Bioelectron., 2013, 51: 103.
[88] Zhou Y, Xu Z, Wang M, Sun B, Yin H, Ai S. Biosens. Bioelectron., 2014, 53: 263.
[89] Wang M, Yin H, Shen N, Xu Z, Sun B, Ai S. Biosens. Bioelectron., 2014, 53: 232.
[90] Hu C, Zheng J, Su X, Wang J, Wu W, Hu S. Anal. Chem., 2013, 85:10612.
[91] Xu L, Xia J, Xu H, Qian J, Yan J, Wang L, Wang K, Li H. Analyst, 2013, 138: 6721.
[92] Lu Y, Xu J, Liu B, Kong J. Biosens. Bioelectron., 2007, 22: 1173.
[93] Cooper J A, Woodhouse K E, Chippindale A M, Compton R G. Electroanalysis, 1999, 11: 1259.
[94] Tu W, Lei J, Wang P, Ju H. Chem. Eur. J., 2011, 17: 9440.
[95] Hao Q, Wang P, Ma X, Su M, Lei J, Ju H. Electrochem. Commun., 2012, 21: 39.
[96] Li H, Li J, Xu Q, Yang Z, Hu X. Anal. Chim. Acta, 2013, 766: 47.
[97] Cooper J A, Wu M, Compton R G. Anal. Chem., 1998, 70: 2922.
[98] Haddour N, Cosnier S, Gondran C. Chem. Commun., 2004, 2472.
[99] Wang G L, Yu P P, Xu J J, Chen H Y. J. Phys. Chem. C, 2009, 113: 11142.
[100] Zhang X, Li S, Jin X, Li X. Biosens. Bioelectron., 2011, 26: 3674.
[101] Zhang X, Li S, Jin X, Zhang S. Chem. Commun., 2011, 47: 4929.
[102] Zhao X, Zhou S, Jiang L P, Hou W, Shen Q, Zhu J J. Chem. Eur. J., 2012, 18: 4974.
[103] Pardo-Yissar V, Katz E, Wasserman J, Willner I. J. Am. Chem. Soc., 2002, 125: 622.
[104] Zhu W, An Y R, Luo X M, Wang F, Zheng J H, Tang L L, Wang Q J, Zhang Z H, Zhang W, Jin L T. Chem. Commun., 2009: 2682.
[105] Huang Q, Chen H, Xu L, Lu D, Tang L, Jin L, Xu Z, Zhang W. Biosens. Bioelectron., 2013, 45: 292.
[106] Gong J, Wang X, Li X, Wang K. Biosens. Bioelectron., 2012, 38: 43.
[107] Zhao W W, Yu P P, Xu J J, Chen H Y. Electrochem. Commun., 2011, 13: 495.
[108] Zhao W W, Ma Z Y, Yu P P, Dong X Y, Xu J J, Chen H Y. Anal. Chem., 2012, 84: 917.
[109] Kang Q, Chen Y, Li C, Cai Q, Yao S, Grimes C A. Chem. Commun., 2011, 47: 12509.
[110] Li Y J, Ma M J, Zhu J J. Anal. Chem., 2012, 84: 10492.
[111] Wang W, Bao L, Lei J, Tu W, Ju H. Anal. Chim. Acta, 2012, 744: 33.
[112] Zhao W W, Ma Z Y, Yan D Y, Xu J J, Chen H Y. Anal. Chem., 2012, 84: 10518.
[113] Zhao W W, Ma Z Y, Xu J J, Chen H Y. Anal. Chem., 2013, 85: 8503.
[114] Riedel M, Gobel G, Abdelmonem A M, Parak W J, Lisdat F. ChemPhysChem, 2013, 14: 2338.
[115] Li H, Hao W, Hu J, Wu H. Biosens. Bioelectron., 2013, 47: 225.
[116] Khalid W, El Helou M, Murböck T, Yue Z, Montenegro J M, Schubert K, Göbel G, Lisdat F, Witte G, Parak W J. ACS Nano, 2011, 5: 9870.
[117] Yue Z, Zhang W, Wang C, Liu G, Niu W. Mater. Lett., 2012, 74: 180.
[118] Yildiz H B, Freeman R, Gill R, Willner I. Anal. Chem., 2008, 80: 2811.
[119] Kelly K L, Coronado E, Zhao L L, Schatz G C. J. Phys. Chem. B, 2003, 107: 668.
[120] Ghosh S K, Pal T. Chem. Rev., 2007, 107: 4797.
[121] Wu X, Thrall E S, Liu H, Steigerwald M, Brus L. J. Phys. Chem. C, 2010, 114: 12896.
[122] Zhao W W, Tian C Y, Xu J J, Chen H Y. Chem. Commun., 2012, 48: 895.
[123] Zhao W W, Wang J, Xu J J, Chen H Y. Chem. Commun., 2011, 47: 10990.
[124] Zhao W W, Yu P P, Shan Y, Wang J, Xu J J, Chen H Y. Anal. Chem., 2012, 84: 5892.
[125] Shchukin D G, Sviridov D V, Kulak A I. Sens. Actuators B, 2001, 76: 556.
[126] Wang G L, Xu J J, Chen H Y. Nanoscale, 2010, 2: 1112.
[127] Shen Q, Zhao X, Zhou S, Hou W, Zhu J J. J. Phys. Chem. C, 2011, 115: 17958.
[128] Wang P, Ma X, Su M, Hao Q, Lei J, Ju H. Chem. Commun., 2012, 48: 10216.
[129] Liang Y, Kong B, Zhu A, Wang Z, Tian Y. Chem. Commun., 2012, 48: 245.
[130] Li H, Tian Y, Deng Z, Liang Y. Analyst, 2012, 137: 4605.
[131] Shi H, Zhao G, Liu M, Zhu Z. Electrochem. Commun., 2011, 13: 1404.
[132] Chen K, Liu M, Zhao G, Shi H, Fan L, Zhao S. Environ. Sci. Technol., 2012, 46: 11955.
[133] Lu B, Liu M, Shi H, Huang X, Zhao G. Electroanalysis, 2013, 25: 771.
[134] Wang P, Dai W, Ge L, Yan M, Ge S, Yu J. Analyst, 2013, 138: 939.
[135] Wang P, Ge L, Li M, Li W, Li L, Wang Y, Yu J. J. Inorg. Organomet. Polym. Mater., 2013, 23: 703.
[136] Liu S, Li C, Cheng J, Zhou Y. Anal. Chem., 2006, 78: 4722.
[137] Liang M, Guo L H. Environ. Sci. Technol., 2007, 41: 658.
[138] Liang M, Jia S, Zhu S, Guo L H. Environ. Sci. Technol., 2008, 42: 635.
[139] Jia S, Liang M, Guo L H. J. Phys. Chem. B, 2008, 112: 4461.
[140] Liu Y, Jia S, Guo L H. Sens. Actuators B, 2012, 161: 334.
[141] Zhang B, Guo L H. Biosens. Bioelectron., 2012, 37: 112.
[142] Zhang B, Guo L H, Greenberg M M. Anal. Chem., 2012, 84: 6048.
[143] Ding C, Li H, Li X, Zhang S. Chem. Commun., 2010, 46: 7990.
[144] Golub E, Niazov A, Freeman R, Zatsepin M, Willner I. J. Phys. Chem. C, 2012, 116: 13827.
[145] Zhang X, Zhao Y, Li S, Zhang S. Chem. Commun., 2010, 46: 9173.
[146] Zhang X, Xu Y, Yang Y, Jin X, Ye S, Zhang S, Jiang L. Chem. Eur. J., 2012, 18: 16411.
[147] Zhang Y, Cao T, Huang X, Liu M, Shi H, Zhao G. Electroanalysis, 2013, 25: 1787.
[148] Dilgin Y, Dilgin D G, Dursun Z, Gökçel H, Gligor D, Bayrak B, Ertek B. Electrochim. Acta, 2011, 56: 1138.
[149] Wang Y, Zang D, Ge S, Ge L, Yu J, Yan M. Electrochim. Acta, 2013, 107: 147.
[150] Wang P, Ge L, Ge S, Yu J, Yan M, Huang J. Chem. Commun., 2013, 49: 3294.
[151] Wang Y, Ge L, Wang P, Yan M, Ge S, Li N, Yu J, Huang J. Lab Chip, 2013, 13: 3945.
[152] Ge L, Wang P, Ge S, Li N, Yu J, Yan M, Huang J. Anal. Chem., 2013, 85: 3961. M. Anal. Chem., 2012, 84:6048.
[143] Ding C, Li H, Li X, Zhang S. Chem. Commun., 2010, 46:7990.
[144] Golub E, Niazov A, Freeman R, Zatsepin M, Willner I. J. Phys. Chem. C, 2012, 116:13827.
[145] Zhang X, Zhao Y, Li S, Zhang S. Chem. Commun., 2010, 46:9173.
[146] Zhang X, Xu Y, Yang Y, Jin X, Ye S, Zhang S, Jiang L. Chem. Eur. J., 2012, 18:16411.
[147] Zhang Y, Cao T, Huang X, Liu M, Shi H, Zhao G. Electroanalysis, 2013, 25:1787.
[148] Dilgin Y, Dilgin D G, Dursun Z, Gökçel H ?, Gligor D, Bayrak B, Ertek B. Electrochim. Acta, 2011, 56:1138.
[149] Wang Y, Zang D, Ge S, Ge L, Yu J, Yan M. Electrochim. Acta, 2013, 107:147.
[150] Wang P, Ge L, Ge S, Yu J, Yan M, Huang J. Chem. Commun., 2013, 49:3294.
[151] Wang Y, Ge L, Wang P, Yan M, Ge S, Li N, Yu J, Huang J. Lab Chip, 2013, 13:3945.
[152] Ge L, Wang P, Ge S, Li N, Yu J, Yan M, Huang J. Anal. Chem., 2013, 85:3961.
[1] 刘伟庆,胡林华,霍志鹏,戴松元. 强度调制光电流谱/光电压谱及其应用[J]. 化学进展, 2009, 21(6): 1085-1093.
本文关键词:光电化学传感器的构建及应用,由笔耕文化传播整理发布。
本文编号:156461
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/156461.html