分相釉及其结构呈色的研究
本文选题:分相釉 + 结构色 ; 参考:《陕西科技大学》2016年博士论文
【摘要】:釉的分相呈色及结构呈色作为一种重要的物理装饰技术,既能丰富陶瓷釉的品种,增强呈色的稳定性,获得美观多样的色彩,还可以充分利用矿渣等废弃资源,实现节能减耗、绿色环保。本论文以研究制备新型分相色釉为目标,合理设计出磷系乳浊釉和硼磷双助剂乳浊釉,并以其作为分相基础釉,再以氧化铁、铜粉、氧化铜和铁矿渣作为着色物质,分别添加到基础釉中,制备出呈色丰富、效果各异的釉面。通过各种测试技术分析了釉料组成、烧成制度、显微结构变化等对釉面性能和呈色效果的影响规律,并结合物理学、光学等理论对分相呈色及结构呈色的机理进行了研究。分相结构呈色具有低成本、低能耗、无污染等优势,对于提升陶瓷产品附加值具有较强的理论指导意义和较高的实用价值。(1)在烧成温度为1180-1230℃、850℃以上冷却速度为25-35℃/min的工艺条件下,可以制备出白度较高的R2O-RO-Al2O3-SiO2-P2O5体系乳浊釉,在磷含量高的区域釉面白度较高,产生乳浊的原因是分相和熔析晶体。在硼磷双助剂乳浊釉中,釉组成中的B2O3/P2O5质量比对乳浊效果影响较大,在合适的B2O3/P2O5质量比条件下,磷酸钙含量在2.5-15%的范围,釉面白度高、光泽度好且无裂纹;烧成温度对孤立液滴的大小、含量、分布有较大影响,进而影响釉的乳浊程度;釉面产生乳浊的主要原因是多次不混溶分相。因此,合理的配方组成、分相促进剂的配比与烧成制度是制备高质量分相乳浊釉的重要因素。(2)以少量铁的氧化物为着色剂,分别添加到磷系基础釉及硼磷双助剂基础釉中,在不同烧成温度下,得到具有多种分相呈色效果的釉面。通过分析氧化铁分相色釉中釉组成、烧成温度对分相微珠及呈色效果的影响,结合物理学、色彩学对釉色变化的机理作出解释,即分相色釉的呈色机理符合瑞利散射及米散射规律:当分相微珠尺寸小于100 nm时,以瑞利散射为主,釉面呈淡蓝色;而分相微珠较大时,以米散射为主,釉面呈乳白色。因此,通过调整基础釉的组成、烧成温度,进而控制分相微珠尺寸及分布就可以获得呈色丰富的氧化铁分相色釉。(3)以单质铜粉和氧化铜为着色剂,添加到磷系基础釉中,在微氧化和氧化条件下,制备出不同呈色效果的铜系色釉。固定Ca3(PO4)2含量,随着釉组成中SiO2/Al2O3与SiO2/CaO的变化,分相液滴的大小和分布发生变化,釉面可呈现月白、天青、天蓝、铜绿等多种釉色。当Cu粉含量增加时,釉面由乳白色、天青色、天蓝色向海蓝色转变,乳浊度逐渐提高。当Ca3(PO4)2含量增加时,釉面由浅黄绿色、天青色向月白色转变,光泽度由半透明-半乳浊-乳浊渐变。在不同的烧成温度和气氛下,釉层中Cu+和Cu2+的比例不同,分相液滴的大小和分布对釉面呈色产生重要影响。(4)以铁矿渣代替传统陶瓷色料,添加到磷系基础釉中,通过着色离子产生的化学色与分相结构产生的结构色耦合,制备出不同呈色效果的铁分相花釉。结合釉层组成、显微结构及烧成温度等因素的分析,得出铁矿渣加入量为25 wt%,烧成温度在1190-1250℃范围时,釉面平整、光泽度好,而且釉色及釉面花纹都较丰富。烧成温度在1160℃和1220℃时,未熔解的磷酸钙晶体是釉面出现花纹的原因;烧成温度为1280℃时,釉中的磷酸钙晶体完全熔融,发生微相功能转化,产生釉面花纹。随着铁矿渣加入量的增多,熔解在釉中的Fe203含量增多,釉面颜色加深;当铁矿渣加入量过多时,剩余的Fe203以赤铁矿的形式析出,使釉面带有金属闪光。(5)分相釉中的结构色机制包括光子晶体结构色、瑞利散射色和分相结构呈色等,但因分相釉中两玻璃相折射率比值较低,釉面呈色效果不明显。引入Fe、Cu元素于分相釉中,分相对着色元素的聚集作用与其自身多种化学呈色相耦合、各种结构色机制也因折射率之比提高得到强化,产生了丰富多彩的呈色效果。进一步丰富了陶瓷色釉的呈色机理,改变了“只有气氛才能变换色彩”的观念。
[Abstract]:The color distribution and structural color of the glaze as an important physical decoration technology can not only enrich the variety of the ceramic glaze, enhance the stability of the color and obtain the beautiful and diverse colors, but also make full use of the waste resources such as slag to achieve energy saving and environmental protection. This paper is aimed at the research and preparation of a new phase color glaze for the purpose of rational design. Phosphorous opacification glaze and boron phosphorus double additive glaze are used as phase separation base glaze, and then iron oxide, copper powder, copper oxide and iron slag are added to the base glaze, respectively. The glaze with rich color and different effect is prepared. The glaze composition, sintering system, microstructure change and so on are analyzed by various test techniques. The influence of performance and color rendering effect is studied in combination with the theory of physics, optics and other theories. The phase separation structure has the advantages of low cost, low energy consumption, no pollution and so on. It has strong theoretical guiding significance and high practical value for enhancing the added value of ceramic products. (1) in the sintering temperature Under the conditions of 1180-1230 C and 850 centigrade cooling rate of 25-35 C /min, the opacification glaze of R2O-RO-Al2O3-SiO2-P2O5 system with higher whiteness can be prepared. The white degree of the glaze is higher in the region with high phosphorus content. The cause of the opacification is phase separation and melting crystal. The B2O3/P2O5 quality ratio in the glaze composition of the boron phosphorus double aid opaque glaze is compared. The effect of opacification is great. Under the suitable B2O3/P2O5 mass ratio, the calcium phosphate content is in the range of 2.5-15%, the white degree of glaze is high, the glossiness is good and there is no crack. The firing temperature has a great influence on the size, content and distribution of the isolated droplet, and then affects the opacification degree of the glaze, and the main reason for the opacification of the glaze is the multiple unmiscible phase separation. Therefore, the rational formulation, the proportioning of the phase separation promoter and the firing system are important factors for the preparation of high quality phase separated opaque glaze. (2) a small amount of iron oxide as the colorant is added to the base glaze of the phosphorus system and the basic glaze of the boron and phosphorus double auxiliaries. At different firing temperatures, the glaze with a variety of phase separation effects is obtained. The composition of the glaze in the phase color glaze of ferric oxide, the influence of the firing temperature on the phase separation microsphere and the color rendering effect, and the explanation of the mechanism of the color change in physics and color science, that is, the color mechanism of the phase color glaze is in accordance with the Rayleigh scattering and the rice scattering law: when the size of the phase microsphere is less than 100 nm, the Rayleigh scattering is the main and the glaze is light blue. And the glaze is milky white when the microsphere is large, and the glaze is milky white. Therefore, by adjusting the composition of the base glaze and burning the temperature, and then controlling the size and distribution of the phase microbeads, the color rich phase color glaze of iron oxide can be obtained. (3) the copper powder and copper oxide as the colorant are added to the base glaze of the phosphorus system and in the micro oxidation and oxygen. Under the conditions, the copper color glaze with different color effect was prepared. The content of Ca3 (PO4) 2 was fixed. With the change of SiO2/Al2O3 and SiO2/CaO in the composition of the glaze, the size and distribution of the phase droplet changed. The glaze could show a variety of glaze color, such as the white, the celestite, the sky blue and the copper green. When the content of the Cu powder increased, the glaze was milky white, sky blue, and sky blue to sea blue. When the content of Ca3 (PO4) 2 increases, the glaze is changed from light yellow green to yellow green, sky blue to white, and glossiness from semitransparent turbid to opacification. In different firing temperatures and atmosphere, the proportion of Cu+ and Cu2+ in the glaze layer is different. The size and distribution of the phase droplets have an important effect on the color appearance of the glaze. (4) Iron slag is added to the base glaze in the phosphorus system instead of the traditional ceramic pigment. By coupling the chemical color produced by the colored ion and the structure color of the phase separation structure, the iron separation glaze with different color effect is prepared. The composition of the glaze layer, the microstructure and the sintering temperature are analyzed. The amount of iron slag added is 25 wt%, and the sintering temperature is 1 At the range of 190-1250 C, the glaze is smooth and glossiness is good, and the glaze color and the glaze pattern are all rich. When the sintering temperature is 1160 and 1220, the amorphous calcium phosphate crystal is the cause of the glaze pattern. When the sintering temperature is 1280, the calcium phosphate crystals in the glaze are completely fused, the microphase function transformation occurs and the glaze pattern produces. With the iron, the glaze pattern is produced. With iron, with iron. With iron, with iron. With iron When the amount of Slag Added increased, the content of Fe203 in the glaze increased and the color of the glaze deepened. When the amount of iron slag added, the remaining Fe203 precipitated in the form of hematite, which made the glaze with metal flash. (5) the structure color mechanism in the phase separation glaze includes the photonic crystal structure color, the Rayleigh scattering color and the phase structure color, but the phase separation glaze. The ratio of the refractive index of the glass phase of the middle two is low, and the color effect of the glaze is not obvious. The introduction of Fe, the Cu element in the phase separation glaze, the aggregation of the relative coloring elements is coupled with its own variety of chemistry, and the color mechanism of various structures is enhanced by the ratio of the refractive index, which produces a colorful and colorful effect. Further enriching the ceramic color. The coloring mechanism of glaze changed the idea that only atmosphere can change colors.
【学位授予单位】:陕西科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TQ174.43
【相似文献】
相关期刊论文 前10条
1 赵养性;降低日用瓷烧成温度的几点看法[J];中国陶瓷;1982年06期
2 赵长新;;以弹性模量确定电瓷最佳烧成温度范围的探讨[J];中国电瓷;1985年04期
3 孙国梁;;烧成温度过高使青花泛黑泛紫的机理初探[J];中国陶瓷;1991年05期
4 陈立骏;解梅;;降低日用陶瓷烧成温度与节能关系的分析、计算——试论降低日用陶瓷烧成温度的节能裕度[J];中国陶瓷;1992年06期
5 倪群,林为坤;陶瓷釉烧成温度的近似计算[J];福建建材;1996年03期
6 陈贵荪,罗宏杰,郑家范,朱海涛;烧成温度与锂质耐热瓷结构及性能的关系[J];陶瓷;1997年03期
7 余少华;硅灰石降低日用细瓷烧成温度的研究[J];景德镇陶瓷;2000年04期
8 朱宝利;王瑞生;范增为;王志发;卜景龙;王榕林;孙加林;;烧成温度对Al_2TiO_5-ZrO_2复合材料性能的影响[J];耐火材料;2008年06期
9 张酣,陈祖耀,钱逸泰;烧成温度对气敏材料性能的影响[J];应用化学;1987年03期
10 刘景林;;金属硅的细分散性及烧成温度对刚玉石墨质制品性能的影响[J];耐火与石灰;2008年03期
相关会议论文 前7条
1 刘震;高文元;;不同烧成温度下电瓷微观结构的研究[A];中国硅酸盐学会陶瓷分会2009年年会论文集(二)[C];2009年
2 申向利;;烧成温度对镁钙砖性能及使用的影响[A];第十四届晋、鲁、豫、冀、京、辽六省(市)金属(冶金)学会耐火材料学术交流会论文集[C];2010年
3 万隆;刘元锋;李德意;周武艺;;提高陶瓷强度的研究[A];电工陶瓷第七次学术年会暨学术交流会论文集[C];2001年
4 詹益州;;缩点釉在工艺美术陶瓷上的应用研究[A];中国陶瓷工业协会装饰材料专业委员会第五届第三次全体会议暨中国硅酸盐学会陶瓷分会色釉料暨原辅材料专业委员会第二届第三次全体会议论文集[C];2009年
5 夏广斌;韦国锡;尹彦征;彭虎;;微波烧成高温大红釉的初步研究[A];中国硅酸盐学会陶瓷分会色釉料暨原辅材料专业委员会第一届第三次全体会议论文集[C];2005年
6 周健儿;胡青锋;王娟;;中低温强化瓷的研制[A];中国硅酸盐学会2003年学术年会论文摘要集[C];2003年
7 李勇;;如何合理制定与调整电瓷焙烧曲线[A];2010输变电年会论文集[C];2010年
相关重要报纸文章 前4条
1 赵永周 孙玉虎;烧结类新墙材制品存在的缺陷及解决方法[N];中国建材报;2011年
2 卢文龙 界首市工艺陶瓷厂;界首彩陶的缺陷分析[N];安徽经济报;2010年
3 翟新岗 董波;低温高光泽艺术瓷装饰大红釉的研制[N];广东建设报;2006年
4 本报记者 李浩民;争当节能降耗排头兵[N];潮州日报;2010年
相关博士学位论文 前1条
1 杨长安;分相釉及其结构呈色的研究[D];陕西科技大学;2016年
相关硕士学位论文 前7条
1 廖佳;高强低导热氧化铝轻质隔热材料的制备及性能研究[D];武汉科技大学;2015年
2 朱楠楠;成型及烧成温度制度对3Y-TZP陶瓷结构与性能影响的研究[D];济南大学;2015年
3 裴楚楚;从原始瓷的工艺研究探索中国瓷器起源问题[D];浙江大学;2014年
4 吴亭亭;陶瓷工业废料及疏浚淤泥用于烧制建筑陶瓷的研究[D];暨南大学;2012年
5 黄洁宁;利用煤矿废弃物制备泡沫隔热陶瓷研究[D];南昌大学;2014年
6 梁爱民;闪光釉的研制[D];武汉理工大学;2003年
7 林衡;MgO+Y-TZP/Al_2O_3复合材料性能的研究[D];华南理工大学;2010年
,本文编号:2016633
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2016633.html