基于大环多胺纳滤膜的制备与表征
发布时间:2018-06-19 23:51
本文选题:纳滤膜 + 硅溶胶 ; 参考:《上海应用技术学院》2015年硕士论文
【摘要】:近年来,纳滤膜技术已经在生物化学、制药、水处理、食品等领域得到广泛应用,由于其巨大的经济潜力,荷负电荷的纳滤膜得到越来越多的关注。如何提高膜的性能已成为纳滤膜研究的热点之一。本文采用界面聚合方法制备纳滤膜,通过选择新型大环多胺作为水相单体,并在水相中添加硅溶胶或者有机盐等方法对膜的性能进行优化。本文研究结果如下:首先,以截留分子量为50000Da的聚醚砜(PES)超滤膜为基膜,以自己合成的1,4,7,10-四氮杂环十二烷为水相单体,均苯三甲酰氯(TMC)为有机相单体通过界面聚合的方法制备了新型纳滤膜。实验研究了单体浓度、水相中添加硅溶胶的含量、反应时间、热处理时间对纳滤膜纯水通量和对无机盐截留率的截留性能的影响;通过全反射红外光谱法(FTIR-ATR)和X-射线能谱仪(EDS)研究膜表面的化学结构,通过扫描电镜(SEM)和原子力显微镜(AFM)观察膜表面的形态;制备的纳滤膜的性能分别用不同的无机盐的截留率来进行评估。制备的纳滤膜对几种无机盐的截留顺序为:Na2SO4MgSO4Mg (NO3)2NaCl。制备的纳滤膜对Na2SO4和PEG600的截留率都在90%以上,而对NaCl的截留率大概在10%左右。在水相中添加了0.1%(w/v)硅溶胶后,纳滤膜对无机盐的截留率变化不大,但是纯水通量却从24.2 L·m-2·h-1 (25℃,0.6 MPa)增加到38.9 L·m-2·h-1 (25℃,0.6 MPa),并且添加硅溶胶后的纳滤膜有良好的亲水性。其次,研究了以聚砜(PSF)超滤膜为基膜,以1,4-环己二胺为水相单体,TMC为有机相单体通过界面聚合的方法制备了聚环己二酰胺复合纳滤膜,并且,我们发现在水相中添加N-环己基氨基磺酸钠(SCHS)可以一定程度的提高纳滤膜的纯水通量和截留率。膜的活性层结构分别用ATR-IR、SEM和AFM进行了表征。通过研究单体浓度、水相添加剂SCHS的含量、反应时间、热处理时间和温度对纳滤膜纯水通量和无机盐截留性能的影响,对纳滤膜的性能进行了优化;采用SEM、AFM对膜的结构和形态进行了表征。在最佳制备条件下制备的SCHS-聚环己二酰胺复合纳滤膜在操作压力为0.6Mpa下的纯水通量为:44.6 L·m-2·h-1,对2000ppm的Na2SO4溶液的截留率为98.1%。SCHS-聚环己二酰胺复合纳滤膜添加SCHS后的抗污性能和亲水性能有一定的提高。分别用两种方法对制备的SCHS-聚环己二酰胺复合纳滤膜的孔径大小、孔径分布和截留分子量进行计算,计算的结果为:平均孔径大概在0.33-0.42m。
[Abstract]:In recent years, nanofiltration membrane technology has been widely used in biochemistry, pharmacy, water treatment, food and other fields. Because of its great economic potential, charged and negative charge nanofiltration membrane has been paid more and more attention. How to improve the performance of nanofiltration membrane has become one of the hotspots in nanofiltration membrane research. Nanofiltration membranes were prepared by interfacial polymerization. The properties of the membranes were optimized by selecting new macrocyclic polyamines as aqueous monomers and adding silica sol or organic salts in aqueous phase. The results are as follows: firstly, the polyether sulfone (PES) ultrafiltration membrane with a molecular weight of 50000Da was used as the base membrane, and the water phase monomer was synthesized by ourselves. A novel nanofiltration membrane was prepared by interfacial polymerization of trimethoyl chloride (TMC) as an organic monomer. The effects of monomer concentration, the content of silica sol in water phase, reaction time and heat treatment time on the water flux of nanofiltration membrane and the retention performance of inorganic salt were studied. The chemical structure of the film surface was studied by FTIR-ATR and EDS. The morphology of the film was observed by scanning electron microscope (SEM) and atomic force microscope (AFM). The properties of prepared nanofiltration membranes were evaluated by different rejection rates of inorganic salts. The retention order of the prepared nanofiltration membrane to several inorganic salts is: 1 Na 2SO 4 MgSO 4 mg O 3 O 3 O 3 NaCl. The rejection rates of nanofiltration membranes to Na _ 2SO _ 4 and PEG600 were above 90%, while to NaCl were about 10%. After adding 0.1w / v) silica sol in water phase, the rejection rate of inorganic salt by nanofiltration membrane did not change much, but the pure water flux increased from 24.2 L m -2 h -1 to 38.9 L m -2 h -1 + 25 鈩,
本文编号:2041908
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2041908.html