BT40型高速、高精度直联式加工中心机械主轴单元研制
[Abstract]:Equipment manufacturing industry is the pillar industry of national economy and one of the factors that reflect the comprehensive strength of a country. The foundation of equipment manufacturing industry is machine tool. The machine tool with high precision and high efficiency is the guarantee of product quality, and the machine tool which integrates precision and efficiency is the machining center. The spindle unit is one of the main components of the machine tool. The machining workpiece is realized by the spindle unit holding the workpiece or the tool rotating. Therefore, the precision of the spindle unit has an important influence on the accuracy of the machine tool. The spindle unit of machining center is a kind of high rigidity, high precision and modularization functional unit with loose broach mechanism, which is driven by servo motor. It has an important influence on the quality and productivity of machining center. According to the market demand for high speed and high precision spindle unit of machining center, a set of high speed and high precision direct spindle unit is developed through analysis, comparison and theoretical calculation. The research work has the important significance to our country processing center research and development. The main research work of this paper is as follows: according to the engineering requirements, the design requirements of the spindle unit are put forward, and the overall design scheme of the spindle unit is demonstrated. Through demonstration, the mechanical spindle unit, the straight-connected structure BT40 cutter handle and the loose broach scheme are determined. Select P2 grade angular contact ceramic ball bearing, two in series, the whole back to back four row rolling bearing combination structure, light preload, grease lubrication. Main shaft unit sleeve design circulating water cooling mode. The main parameters of shafting structure of spindle unit are designed and calculated. According to the determined rolling bearing combination structure, the optimum support span and spindle radial stiffness of bearing combination are designed and calculated, and the radial runout of spindle cone hole and centering journal is calculated. The axial movement precision of the spindle and the strength of the joint screw of the front and rear cover are checked and calculated, and the type, quantity, stroke and force of the disc spring are calculated by the software compiled by Mubel Company, and the type and quantity of the disc spring are determined. The manufacturing process of the main parts of the spindle unit is worked out, the difficulties encountered in the machining process of the parts are demonstrated in detail, and the corresponding technological measures are put forward. According to the measuring results of the main parts' dimension precision, the assembly process of the spindle unit is worked out, and the length matching size of the spacer sleeve is adjusted repeatedly during the assembly process, and the spindle unit that meets the requirement of rigidity is obtained. The geometric accuracy and comprehensive precision of the developed spindle unit are tested. The main detection contents include: the beat of the inner cone hole of the spindle, the beat of 300 mm near the end of the spindle, the axial movement of the spindle, the temperature rise detection, the vibration detection, the noise detection, the measurement of the axial movement of the spindle, the detection of temperature rise, the detection of vibration and the detection of noise. Static stiffness test, broach experiment, spindle axial error motion detection, spindle radial error motion detection and spindle tilt motion error detection. Check the test result and design calculation result and find the law of calculation error.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG659
【相似文献】
相关期刊论文 前10条
1 毕善斌;应用优化方法解决主轴设计问题的一种探讨[J];机床;1986年01期
2 傅维椿;阎一工;;提升机主轴材料的断裂特性[J];矿山机械;1986年04期
3 胡友安;黄幼玲;周军;;主轴结构优化的有限元方法[J];河海大学常州分校学报;2007年01期
4 王海涛;李初晔;;提高主轴整体质量的设计方法研究及应用[J];制造技术与机床;2013年04期
5 孙铭启;谈谈有关刚性主轴设计的几个问题(续)[J];组合机床通讯;1965年04期
6 蒋式昕;;切削有色金属的超高精度主轴[J];仪器制造;1983年06期
7 申旭东;主轴、支承系统设计[J];中国酿造;1985年03期
8 杨厚华;夏荣海;;提升机主轴的逐点计算法[J];矿山机械;1985年01期
9 钟恩光;王明道;;提升机主轴的优化设计[J];矿山机械;1987年06期
10 夏雨;张云玲;王丽萍;;小型铣削中心主轴的静态特性与模态分析[J];机械制造;2009年03期
相关会议论文 前3条
1 温建立;熊万里;黄红武;;一类新型结构的高速精密主轴单元的振动特性分析[A];振动利用技术的若干研究与进展——第二届全国“振动利用工程”学术会议论文集[C];2003年
2 赵国平;吕允通;赵维平;邵立秋;;和面机主轴结构的改进[A];中国机械工程学会包装与食品工程分会第五届学术年会论文集[C];1998年
3 万永丽;;数控立式铣床的特性及主轴结构的研究[A];2004年十一省区市学术年会论文集[C];2004年
相关博士学位论文 前1条
1 李伟;高速精密气动微主轴的关键技术研究[D];湖南大学;2014年
相关硕士学位论文 前10条
1 程茂龙;基于虚拟仪器的主轴动静态特性测试系统的研究[D];浙江大学;2015年
2 周玉杰;短电弧数控铣床主轴结构优化设计及动态特性分析[D];新疆大学;2015年
3 戎榕;小型动静压振动主轴的设计与实验研究[D];浙江工业大学;2015年
4 李德生;瓷砖行星端面抛光机运动及结构研究[D];景德镇陶瓷学院;2013年
5 张璐;数控加工中心主轴热特性分析[D];东北大学;2014年
6 王军洁;摩擦焊机主轴的静动态特性的分析与研究[D];西安科技大学;2015年
7 史鑫鹏;基于刚度优化的机床主轴结构设计与仿真[D];宁夏大学;2016年
8 于志强;气膜冷却孔电火花加工用主轴机构优化设计[D];烟台大学;2016年
9 于文东;数控车床主轴分析与热特性测试[D];大连理工大学;2015年
10 管峰;气体静压主轴设计及关键技术研究[D];国防科学技术大学;2014年
,本文编号:2203953
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/2203953.html