当前位置:主页 > 科技论文 > 交通工程论文 >

鞍钢配送中心规划及车辆调度方案优化研究

发布时间:2018-01-09 13:27

  本文关键词:鞍钢配送中心规划及车辆调度方案优化研究 出处:《吉林大学》2014年硕士论文 论文类型:学位论文


  更多相关文章: 配送中心 车辆调度 路径优化 遗传算法


【摘要】:随着电子商务的蓬勃发展,人们网上购物的需求越来越多,相应的运输和配送也不断增加,由于配送和运输引发的诸如交通阻塞、尾气排放等问题也随之而来。同时,由于国际石油能源的严重减少,导致汽油柴油价格上涨幅度很大,对运输成本的要求也提出了挑战。如果仍采用以前的运输组织配送,必然会产生很多问题,如成本高、效率低下、服务质量差,而且也达不到客户的要求。不合理的车辆调度系统不仅会提高物流成本、降低物流效率、增加出行时间和路线,而且还会对城市的交通产生一定的负担。为了最大程度的满足客户需求,降低运输成本,最大化企业自身利益,建立合理的配送中心车辆调度网络,科学的调整配送模式、库存策略和运输手段以实现配送综合成本最低的目标,成为优化配送系统的主要目的。 本文以鞍钢汽运公司配送中心为研究对象,结合配送中心的相关理论和遗传算法的相关知识,从企业全局角度出发对配送系统中的车辆调度问题进行优化,即对配送中心的存储、分拣、加工、配货和运输等作业流程进行分析研究,满足现代企业物流一体化的要求,,满足客户要求降低仓储运输等综合成本。 论文的主要内容如下:首先阅读关于配送系统车辆调度的研究文献,梳理相关理论,对车辆调度问题求解的方法进行对比分析并评价其优劣;其次针对本文所讨论的问题,结合已有的研究方法和国内外文献的梳理,选择遗传算法作为本文车辆调度的优化方法,同时介绍了遗传算法原理以及在配送车辆路径优化中具体的实现步骤及流程;然后,以鞍钢汽运公司配送中心为实证研究对象,对鞍钢汽运公司配送中心功能定位、规划方案、流程设计、管理规划进行论述;最后,通过遗传算法进行路径优化,结果表明:若按照旧的配送方式,10个仓储点一般配送20辆车,分别进行20次配送路径,增加了配送的成本,影响了配送的效率。通过本方案的优化方法,仅仅8辆车就可以把应该由20辆车的任务完成,节省了12辆车,节约了配送成本,大大提高了配送效率。
[Abstract]:With the rapid development of electronic commerce, people need more and more online shopping, and the corresponding transportation and distribution are also increasing, such as traffic congestion caused by distribution and transportation. At the same time, due to the serious reduction of international oil and energy resources, gasoline and diesel prices have increased greatly. If the former transportation organization distribution is still adopted, there will be many problems, such as high cost, low efficiency and poor service quality. Unreasonable vehicle scheduling system will not only increase logistics costs, reduce logistics efficiency, increase travel time and route. In order to meet the needs of customers to the greatest extent, reduce transportation costs, maximize the interests of enterprises, establish a reasonable distribution center vehicle scheduling network. Scientific adjustment of distribution mode inventory strategy and means of transportation to achieve the goal of the lowest comprehensive cost of distribution becomes the main purpose of optimizing the distribution system. This paper takes the distribution center of AISC as the research object, combines the relevant theory of distribution center and the related knowledge of genetic algorithm, and optimizes the vehicle scheduling problem in the distribution system from the overall perspective of the enterprise. That is, the storage, sorting, processing, distribution and transportation processes of distribution center are analyzed to meet the requirements of logistics integration of modern enterprises, and to meet the requirements of customers to reduce the comprehensive cost of warehousing and transportation. The main contents of this paper are as follows: firstly, we read the research literature about vehicle scheduling in distribution system, combed the relevant theories, compared and analyzed the methods of solving vehicle scheduling problem and evaluated its merits and demerits. Secondly, according to the problems discussed in this paper, combined with the existing research methods and domestic and foreign literature combing, genetic algorithm is selected as the optimization method of vehicle scheduling in this paper. At the same time, it introduces the principle of genetic algorithm and the realization steps and flow chart of vehicle routing optimization. Then, taking the distribution center of AISC as the empirical research object, this paper discusses the function orientation, planning scheme, process design and management planning of the distribution center of AISC. Finally, the genetic algorithm is used to optimize the route. The results show that if 20 vehicles are distributed in 10 storage points according to the old distribution mode, 20 distribution paths are carried out respectively, which increases the cost of distribution. Through the optimization method of this scheme, only 8 vehicles can be completed by 20 vehicles, which saves 12 vehicles, saves the cost of distribution and greatly improves the efficiency of distribution.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U492.22

【参考文献】

相关期刊论文 前10条

1 蹇洁;王旭;葛显龙;;云自适应遗传算法有能力约束的车辆调度优化[J];重庆大学学报;2013年08期

2 卢冰原;程八一;;具有模糊行程的城市物流动态费用多车型车辆调度问题研究[J];模糊系统与数学;2013年01期

3 郑光;李强;;基于POS粒子滤波的物流运输优化调度模型[J];科技通报;2013年04期

4 杨浩雄;胡静;何明珂;;配送中多车场多任务多车型车辆调度研究[J];计算机工程与应用;2013年10期

5 赵若彤;;一种物流配送车辆路径智能优化算法研究[J];计算机与数字工程;2013年04期

6 刘军;周骞;邹桂兰;肖宇;;基于微粒群算法的农产品物流配送路径优化研究[J];物流工程与管理;2013年01期

7 李珍萍;李婷婷;梁志新;;带道路容量限制的多配送中心选址问题的数学模型与算法[J];统计与决策;2013年06期

8 朱孟高;米娜;;城市配送车辆路径优化集束式算法的客户点归并策略[J];数学的实践与认识;2013年11期

9 刘春英;;粒子群融合蚁群算法多配送中心车辆路径研究[J];吉林师范大学学报(自然科学版);2013年03期

10 王征;胡祥培;王旭坪;;行驶时间延迟下配送车辆调度的干扰管理模型与算法[J];系统工程理论与实践;2013年02期



本文编号:1401591

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1401591.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户01ed4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com