当前位置:主页 > 科技论文 > 交通工程论文 >

基于物联网技术的桥梁安全监测管理信息系统开发

发布时间:2018-01-24 15:50

  本文关键词: 物联网 桥梁 安全监测 信息管理 RFID 出处:《电子科技大学》2014年硕士论文 论文类型:学位论文


【摘要】:国际上目前最先进、最热点的桥梁安全解决方案是通过桥梁探伤、物联网技术、数据挖掘等技术来一揽子解决问题。我的论文是关于宁夏银川市境内某座桥梁的具体软件工程项目研究开发的成果,课题来源于宁夏软件园辖区企业承接的交通部门攻关课题,这个课题被启动的原因主要是自从前几年国内连续发生恶性桥梁垮塌事故以后,桥梁的安全监测、监控被提到了宁夏、银川政府的议事日程中来,解决桥梁的安全管理已经成为刻不容缓的“民生”安全工程。道路桥梁工程作为极其重要的交通水力枢纽以及扼守咽喉要道的工程,它的安全性直接地关系到了同行的车辆以及行人的人身安全,然而在其服役过程中,由于受到当地气候、大气氧化、环境腐蚀等不利的因素对各种设施的短期、长期影响和长期地在静载或者活载作用下的道路桥梁结构将会不可避免地产生着自然的老化、损伤不断地积累,结构的性能会逐步地劣化,道路桥梁的安全性就会不断地受到威胁,因此在经济和技术条件允许的情况下对桥梁结构状态的监测是当今桥梁工程研究的热点问题。而数据趋势分析作为道路桥梁工程结构健康问题监测过程中的极其重要的环节,将是决策者和管理者进行道路桥梁结构安全评估以及决策的极其重要的依据。数据挖掘为桥梁监测数据趋势的整理和分析提供了新的思维方式和研究方法。本文主要内容是对桥梁结构状态监测系统桥梁安全监测管理信息系统进行需求分析,并设计实现。本文的主要工作如下:1.介绍了桥梁结构安全、运行状态监测系统并分析了其产生的背景和国内外的现状,提出了相应的问题;2.剖析物联网相关技术在桥梁安全监测系统中的应用,以及数据挖掘中BP神经网络和时序算法以及模块实现的相关技术;3.详细分析了桥梁安全监测管理信息系统的功能需求以及软硬件需求;4.结合BP神经网络算法实现不可靠数据的恢复功能,利用时序算法实现桥梁参数的趋势预测功能;5.完成桥梁监测软件系统建设,提出现有模块需要改进的地方。
[Abstract]:At present, the most advanced and hot bridge safety solution in the world is through bridge flaw detection, Internet of things technology. Data mining and other technologies to solve the problem. My paper is about a bridge in Yinchuan Ningxia City specific software project research and development results. The subject comes from the transportation department in Ningxia Software Park area. The main reason for this problem is the bridge safety monitoring after the malignant bridge collapse accident occurred continuously in China a few years ago. Monitoring was brought to the agenda of the Ningxia, Yinchuan government. Solving the safety management of bridges has become an urgent "people's livelihood" safety project. Road and bridge engineering as an extremely important traffic and hydraulic hub and choke the throat of the project. Its safety is directly related to the personal safety of vehicles and pedestrians, but in the service process, due to the local climate, atmospheric oxidation, environmental corrosion and other adverse factors on the short-term facilities. Long term effect and long term road and bridge structure under the action of static or live load will inevitably produce natural aging, damage accumulation, and the performance of the structure will gradually deteriorate. The safety of roads and bridges will be constantly threatened. Therefore, monitoring the state of bridge structure under the circumstances of economic and technical conditions is a hot issue in the research of bridge engineering, and data trend analysis is an extremely important part of the monitoring process of structural health problems in road and bridge engineering. The important part. It will be a very important basis for decision makers and managers to evaluate the safety of road and bridge structures and make decisions. Data mining provides a new way of thinking and research method for the arrangement and analysis of bridge monitoring data trend. The main content is to analyze the requirement of bridge safety monitoring management information system. The main work of this paper is as follows: 1. This paper introduces the bridge structure safety, operation condition monitoring system, analyzes the background of its emergence and the current situation at home and abroad, and puts forward the corresponding problems; 2. Analyze the application of Internet of things technology in bridge safety monitoring system, and the related technology of BP neural network, timing algorithm and module realization in data mining; 3. The function requirements and software and hardware requirements of bridge safety monitoring management information system are analyzed in detail. 4. Combining BP neural network algorithm to realize the recovery function of unreliable data, using time series algorithm to realize the trend prediction function of bridge parameters; 5. Complete the construction of bridge monitoring software system, put forward the existing modules need to be improved.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U446;TP391.44;TN929.5

【参考文献】

相关期刊论文 前1条

1 柳旭;祁耀斌;;数据挖掘在桥梁健康监测智能评估系统中的应用[J];微计算机信息;2006年24期



本文编号:1460409

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1460409.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6ff36***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com