面向城市交通拥堵疏导的节点分流策略研究
发布时间:2018-01-29 18:45
本文关键词: 城市交通拥堵 节点分流率 拥堵疏导 交通仿真 出处:《广东工业大学》2014年硕士论文 论文类型:学位论文
【摘要】:随着经济的不断发展、人民的生活水平不断提高,城市机动车数量急剧上升。由此,城市交通拥堵现象也与日俱增。城市汽车保有量的增加速度远远超过城市道路基础设施建设的速度,这就更加加剧了交通供给与交通需求间的矛盾。与此同时,城市交通管理水平的不足严重导致了城市交通路网的利用率低下的问题,这就造成了这样的交通现象,往往会产生路网中某些路段十分拥挤,而有些路段却十分空闲。城市拥堵疏导是在交通拥堵发生后针对不同拥堵程度所采取的解决方法。通过对交通拥堵数据进行科学化的分析,进而采取合理的交通疏导方式,将拥堵路段上的交通流以最快的速度疏散出去,提高路网利用率,恢复路网交通的正常运行。 分流在交通拥堵疏导中处于核心地位。传统的交通拥堵疏导中采用的预分流方法,缺乏从系统角度的规划,往往只能解决部分路段的拥堵问题,却容易导致其他路段再次发生交通拥堵。节点是交通路网中重要组成部分,是交通网络的咽喉,交通流通过节点转向不同的路段。本文从交通路网中的节点分流率入手,通过改变路网中的节点分流率来实现拥堵交通流的疏导。以节点分流率为控制变量,综合考虑路网中交通需求,构建面向交通拥堵疏导的分流策略模型,规划不同OD对间的多条可选路径,由节点分流率与OD交通需求量知各可选路径的交通量分配,再通过交通仿真软件进行可视化分析,从而得出路网中控制各节点分流率对拥堵疏导的作用,为交通管理者提供交通拥堵发生时能快速找到关键节点,为交通管理者在以后遇到交通拥堵时采用交通拥堵疏导方案作参考,同时也为现场实施人员进行分流控制时提供参考。本文还设计了基于Matlab仿真求解相应的模型算法,并利用交通仿真软件Paramics来验证节点分流策略。 最后,本文以广州市天河区某交通路网为例,分析了天河区的交通现状,根据天河区交通需求矩阵,由天河区的交通网络地图,利用交通软件抽象出路网节点与交通路段,构建合理的路网图,最后通过Matlab与Paramics组合仿真,优化节点分流策略,并验证了该策略对交通拥堵疏导的积极作用。
[Abstract]:With the continuous development of the economy, improve people's living standard, the number of motor vehicles increased rapidly. The city, city traffic congestion. The city also grow with each passing day car ownership increased much faster than the infrastructure construction of city road speed, which is more Gaga intensified the contradiction between the supply and demand of traffic. At the same time, lack of city the level of traffic management seriously resulted in the use of city traffic rate low, it will cause traffic phenomena like this, often in some sections of road is very crowded, and some sections are very idle. City congestion is a method to solve the traffic congestion in allusion to different degree of congestion taken by. Analysis of scientific data on traffic congestion, and take reasonable way to ease traffic congestion on the road, the traffic flow at the fastest speed It can be evacuated to improve the utilization rate of road network and restore the normal operation of road network traffic.
Diversion in the traffic congestion is at the core position. The traditional traffic congestion in the pre diversion method, lack from the angle of system planning, often can only solve the problem of congestion sections, but easily lead to other sections of the traffic jam. Another node is an important part in the traffic network, traffic network is the throat of traffic flow through to different sections. The node from the node in the traffic network flow rate of the nodes of the network by changing the flow rate to achieve traffic flow guidance. The node shunt rate as the control variable, comprehensive consideration of the traffic demand, construction diversion strategy model for traffic congestion, the planning of different OD on the paths, traffic assignment by node shunt rate and OD traffic demand to know the path, and then through the traffic simulation software for visual points Analysis to each node of the diversion rate of congestion control in the road network, provide traffic congestion occurs to find key nodes quickly for traffic management, traffic management in the face of traffic congestion after the traffic congestion as a reference for counseling scheme, but also provide reference for on-site implementation of personnel flow control. This paper also designs the model of Matlab simulation based on the corresponding algorithm, and by using traffic simulation software Paramics to verify the node distribution strategy.
Finally, this paper takes Guangzhou city of Tianhe District traffic network as an example, analyzes the traffic situation in Tianhe District, according to the Tianhe District traffic demand matrix, the transportation network map of Tianhe District, using the traffic way software Abstract network node and traffic road network construction, reasonable, the most by Matlab combined with Paramics simulation, optimization of node distribution strategy. And verify the positive effect of the strategy of traffic congestion.
【学位授予单位】:广东工业大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U491
【引证文献】
相关博士学位论文 前1条
1 袁绍欣;城市交通拥堵传播机理及其控制策略研究[D];长安大学;2012年
,本文编号:1474103
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1474103.html