当前位置:主页 > 科技论文 > 交通工程论文 >

天然屑粒式橡胶改性沥青性能研究

发布时间:2018-03-15 12:42

  本文选题:天然屑粒式橡胶沥青 切入点:正交试验设计 出处:《长沙理工大学》2014年硕士论文 论文类型:学位论文


【摘要】:天然屑粒式橡胶改性沥青是以印尼TMA公司生产的Superflex(福莱斯)改性剂与基质沥青经过一定的加工而制得的改性沥青,改性后的沥青高温性能优良,但是目前国内对天然屑粒式橡胶改性沥青的研究并不多,其改性机理值得我们进一步的研究。本文主要围绕天然屑粒式橡胶改性沥青性能评价指标、最佳制备工艺研究、高低温性能改善情况进行展开。首先参考国内外研究现状,对橡胶改性沥青性能评价指标进行探讨,并确定了适合于天然屑粒式橡胶改性沥青性能评价的指标,并对沥青基沥青混合料的试验方法进行了相关介绍。接下来考察了不同加工条件对改性沥青性能的影响,并通过合理选取影响因素、因素水平、评价指标,采用正交试验设计方法对改性沥青制备工艺进行考察,明确了天然屑粒式橡胶改性剂掺量和加工温度是影响改性沥青性能的显著因素,确定了获得最佳性能的天然屑粒式橡胶改性沥青的加工条件是180℃,搅拌时间60min,改性剂掺量15%。然后通过DSR实验、三大指标、黏度试验、老化试验等对不同天然屑粒式橡胶掺量的改性沥青、基质沥青、SBS沥青性能进行对比,分析天然屑粒式橡胶改性沥青的性能改善程度与改善机理,结果显示天然屑粒式橡胶改性沥青在掺量达到15%后,性能与SBS改性沥青的性能接近,尤其是高温性能比较突出,耐老化能力也比较优良。同时进行了热重分析实验,分析了改性前后沥青性质的差异并对天然屑粒式橡胶改性机理进行探讨。之后对纳米CaCO3/天然屑粒式橡胶复合改性沥青进行了相关的研究,选用A、B、C、D四种不同粒径的纳米CaCO3与天然屑粒式橡胶复合改性,对改性后的沥青性能进行评价。采用模糊神经网络对改性后沥青的性能进行预测,使用MATALAB编程,实现基于模糊网络的沥青材料PG分级临界温度及175-C黏度评价算法,并且通过训练后的神经网络能够很好地预测一定加工条件下沥青的性能,误差很小,这说明神经网络在预测改性沥青的性能方面是适用的。
[Abstract]:Natural rubber crumb modified asphalt production in Indonesia's TMA Superflex (Fores) modified asphalt and asphalt modifier after processing and preparation, excellent high temperature performance of modified asphalt, but there is not much research on natural rubber crumb modified asphalt, the the modification mechanism is worth further research. This paper mainly focuses on the natural rubber crumb modified asphalt performance evaluation index, the optimal preparation process research, high and low temperature performance improvement started. The first reference to domestic and foreign research present situation, carries on the discussion to the rubber modified asphalt performance evaluation index, and to determine the suitable natural debris rubber modified asphalt performance evaluation index, and test method of asphalt base asphalt mixture are introduced. Then the effects of different processing conditions on the performance of the modified asphalt, and through Reasonable selection of factors, factors, evaluation index, orthogonal test design method of modified asphalt preparation technology was investigated, the natural rubber crumb modified temperature of agent dosage and processing are significant factors that influence the performance of modified asphalt, the best performance of natural crumb rubber modified grain type asphalt processing conditions of 180 DEG C, stirring time 60min, modifier dosage 15%. and then through the DSR experiment, the three indicators, the viscosity test and aging test of modified asphalt, crumb rubber with different natural content of matrix asphalt, SBS asphalt performance comparison, analysis and mechanism of improving the performance of natural chip level grain type rubber modified asphalt is improved, the results indicated that natural type crumb rubber modified asphalt in volume reached 15%, close to the performance and performance of SBS modified asphalt, especially high temperature performance is outstanding, anti-aging ability is better Good. At the same time the thermogravimetric analysis experiment, analyzes the difference of the modified asphalt properties before and after the mechanism of the natural rubber crumb modified nano CaCO3/ were discussed. After the natural rubber crumb modified asphalt is studied, using A, B, C, D four different particle size the nano CaCO3 and natural rubber crumb modified. To evaluate the performance of modified asphalt. The fuzzy neural network is used to predict the performance of the modified asphalt, the use of MATALAB programming, implementation of PG fuzzy neural network classification of asphalt materials, critical temperature and 175-C viscosity evaluation algorithm based on neural network, and through training after the good prediction performance of certain processing conditions of asphalt, the error is very small, which shows the performance of neural network in the prediction of the modified asphalt is applicable.

【学位授予单位】:长沙理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U414


本文编号:1616075

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1616075.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b49ef***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com