面向决策的北京市道路货运交通动态协调信息系统研究
本文选题:货运交通 + 限行政策 ; 参考:《北京交通大学》2014年硕士论文
【摘要】:进入21世纪后,随着电子商务活动的爆发性增长,城市物流服务需求也在显著增加,这对其发展提出了更高要求的挑战。物流业调整和振兴规划为北京市货运交通行业发展带来了新的发展机遇。以此为契机,北京市如何制定适合本市货运交通行业发展的对策显得极为迫切和重要。而作为货运交通精细化管理的手段之一,本文提出开发面向决策的城市道路货运交通动态协调信息系统。 首先,本文从北京市货运交通系统的构成,如货运需求、货运基础设施、载运工具、组织管理模式及智能信息技术等方面入手,了解北京市货运现状,并调查国内外典型城市货运限行政策,指出当前北京市货运交通管理措施存在的问题。 其次,明确道路货运交通动态协调信息系统建设的意义,对系统进行了可行性分析及需求用例分析,给出了详细的UML用例图和事件流文档,通过系统对象设计定义基本类与对象,并以货车动态通行子系统中货车通行动态配置功能为例,详细描述其动态模型。 之后,研究系统决策过程中不同子系统所涉及的相关模型:交通运行情况监控子系统基于k-means算法的交通拥堵区域划分和基于光流场的交通拥堵区域演变分析监控交通拥堵变化;货车通行动态优化子系统为了针对不同区域的交通情况进行不同的货车通行管理,将人工免疫网络算法应用在交通时段自动划分模型上,并提出了基于仿真优化算法的限行时段动态通行优化模型,以实现货运交通资源的动态协调优化;收集北京市交通委发布的全路网、城六区及各环路路网交通速度的数据,经过线性插值法及径向基函数神经网络算法进行缺失数据的修复,通过实例验证模型的有效性。 最后,根据系统分析与设计,基于jfreechart、matlab、数据库等技术进行了通行证申请审批、限行时段动态通行优化、交通流数据统计、异常数据管理等关键功能的实现。
[Abstract]:After entering the 21st century, with the explosive growth of e-commerce activities, the demand for urban logistics services is also increasing significantly, which poses a higher challenge to its development. Logistics industry adjustment and revitalization plan for Beijing freight transport industry development brought new development opportunities. Taking this as an opportunity, it is very urgent and important for Beijing to formulate countermeasures suitable for the development of freight transportation industry in Beijing. As one of the methods of fine management of freight transportation, this paper presents a decision oriented dynamic coordination information system for urban road freight transportation. First of all, this paper starts with the constitution of Beijing freight transportation system, such as freight transport demand, freight infrastructure, transportation tools, organization and management mode and intelligent information technology, to understand the current situation of freight transportation in Beijing. It also investigates the typical urban freight transport restriction policies at home and abroad, and points out the problems existing in the current management measures of freight transportation in Beijing. Secondly, the significance of the construction of road freight transportation dynamic coordination information system is clarified, the feasibility analysis and requirement case analysis of the system are carried out, and the detailed UML use case diagram and event flow document are given. The basic classes and objects are defined by the system object design, and the dynamic model is described in detail by taking the dynamic configuration function of freight car traffic in the freight car dynamic passage subsystem as an example. Then the relevant models of different subsystems in the decision-making process are studied: traffic traffic monitoring subsystem based on k-means algorithm traffic congestion area division and optical flow field based traffic congestion area evolution analysis monitoring traffic congestion change; In order to carry out different traffic management for different regions, the artificial immune network algorithm is applied to the automatic division model of traffic time. In order to realize the dynamic coordination and optimization of freight transportation resources, the traffic speed data of the whole road network, six districts and each loop road network issued by the Beijing Municipal Transportation Commission are collected, and the dynamic traffic optimization model of the restricted period based on the simulation optimization algorithm is put forward. The missing data is repaired by linear interpolation and radial basis function neural network algorithm, and the validity of the model is verified by an example. Finally, according to the system analysis and design, based on the technology of jfreechart matlaband database, the key functions such as permit approval, dynamic traffic optimization, traffic flow statistics, abnormal data management and so on are realized.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U492.3;U495
【参考文献】
相关期刊论文 前10条
1 韦钦平;邵维;刘飞燕;;基于动态规划迭代法的最小H圈路径优化研究[J];长沙大学学报;2012年02期
2 林震,杨浩;我国城市货运交通可持续发展问题探讨[J];公路交通科技;2003年02期
3 周江评,Hyeon-shic Shin;美国货运交通规划及教育:Kazuya Kawamura教授访问记[J];国外城市规划;2005年04期
4 倪利华;陈笑蓉;;ARIMA模型结合小波去噪的贵阳城市交通流预测[J];贵州大学学报(自然科学版);2011年05期
5 金春玉;郑瑞平;刘洪;李欣;;短时交通流预测研究[J];华东公路;2011年03期
6 刘宗明;贾志绚;李兴莉;;基于灰色马尔科夫链模型的交通量预测[J];华东交通大学学报;2012年01期
7 李奎;王坚;;基于微观仿真的快速路短时交通流预测[J];安徽理工大学学报(自然科学版);2008年04期
8 戴红;郭盛威;;基于模糊回归的交通流量预测模型[J];吉林工程技术师范学院学报;2011年06期
9 张忠平;李岩;杨静;;基于矩阵的频繁项集挖掘算法[J];计算机工程;2009年01期
10 胡顺仁;陈伟民;符玉梅;;基于神经网络的不可靠数据恢复研究[J];计算机仿真;2007年07期
相关博士学位论文 前2条
1 孙晓梅;多源交通信息下的动态路径选择模型与方法研究[D];吉林大学;2011年
2 陈萍;启发式算法及其在车辆路径问题中的应用[D];北京交通大学;2009年
,本文编号:1868816
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1868816.html