车致多层路面变形能量俘获理论研究
本文选题:Winkler地基 + Euler-Bernoulli多层简支梁 ; 参考:《北京交通大学》2014年硕士论文
【摘要】:摘要:当今能源日渐缺乏,电能相当宝贵,长距离低压电网的电力损耗惊人,寻找新能源已成国际热点问题之一。无线传感器以其价格低廉、安装方便、耐用的特点,广泛应用于土木工程与军事领域的监测中,但其发展需求更持久的供能。作为传统供能方式的电池,有着体积大、寿命短、环境污染严重等缺陷,同时还需定期更换,这对于远距离长时间供能的无线传感器来说是不方便、不经济的,所以迫切需要一种新的供能方式。从环境中获取能量为道路设备和无线传感节点供电已是当今能源研究的热点,环境中的可用能源很多:太阳能、风能、振动或噪声等,而利用压电效应俘获环境中的机械振动能是一较高效的俘能方式。本文利用压电效应,俘获由车辆运动产生的路面变形能,研究一种适用于道路的压电俘能器,为公路沿线设备和无线传感器提供能量。 本文将压电俘能器埋置于路面中俘获道路变形能,共分为四章:第一章给出课题背景和意义;第二章介绍研究理论与方法;第三章针对柔性俘能器,基于Euler-Bernoulli梁理论,忽略压电材料刚度,将公路简化为Winkler地基上多层等截面简支梁,路面运动车辆分别简化为移动集中荷载和移动分布线荷载,采用振型叠加法理论计算出路面结构的动力响应,并应用正压电效应获得柔性压电俘能器的电压与功率输出,并用ANSYS模拟验证对比分析;第四章将柔性压电俘能器换为刚性压电俘能器,结果表明理论模型中忽略俘能器刚度存在误差,于是考虑压电材料刚度对路面结构刚度的影响,将公路简化为Winkler地基上多层变截面梁,基于多段梁理论和压电理论,计算出路面结构动力响应及俘能器俘能输出,并用ANSYS模拟验证对比分析。 通过本文的理论探讨,为将来的压电俘能器选型及道路中压电俘能器应用提供了一定的借鉴。
[Abstract]:Absrtact: nowadays, the energy is scarce, the electric energy is very precious, and the power loss of the long distance low voltage power network is amazing. Finding new energy has become one of the hot issues in the world. Wireless sensor is widely used in civil engineering and military field monitoring because of its low price, convenient installation and durable characteristics, but its development needs more lasting energy supply. As a traditional power supply method, the battery has many disadvantages, such as large size, short life, serious environmental pollution and so on. At the same time, it needs to be replaced regularly, which is not convenient and economical for the wireless sensor with long energy supply at long distance. So there is an urgent need for a new way of supplying energy. Getting energy from the environment to power road equipment and wireless sensor nodes has become a hot topic of energy research today. There are many available energy sources in the environment: solar, wind, vibration or noise, etc. It is a more efficient way to capture the mechanical vibration energy in the environment by using the piezoelectric effect. In this paper, a piezoelectric energy capture device, which is suitable for the road, is studied by using the piezoelectric effect to capture the road deformation energy caused by the movement of the vehicle. It provides energy for the equipment and wireless sensor along the highway. In this paper, the piezoelectric energy capture device is buried in the road surface to capture the deformation energy of the road. It is divided into four chapters: the first chapter gives the background and significance of the topic; the second chapter introduces the research theory and methods; the third chapter, for the flexible energy capture device, based on the Euler-Bernoulli beam theory, Neglecting the stiffness of piezoelectric material, the highway is simplified as a simple beam with multi-layer and equal cross-section on Winkler foundation, and the moving vehicle is simplified as moving concentrated load and moving distributed linear load respectively. The dynamic response of pavement structure is calculated by using the mode superposition method. The voltage and power output of the flexible piezoelectric energy capture are obtained by using the positive piezoelectric effect, and the ANSYS simulation is used to verify the comparison and analysis. In chapter 4, the flexible piezoelectric energy capture is replaced by a rigid piezoelectric energy capture. The results show that there is no error in the stiffness of the energy capture device in the theoretical model. Therefore, considering the influence of piezoelectric material stiffness on the stiffness of pavement structure, the highway is simplified as a multi-layer variable section beam on Winkler foundation, based on the theory of multi-section beam and piezoelectric theory. The dynamic response of pavement structure and the output of energy capture are calculated and compared with ANSYS simulation. Through the theoretical discussion in this paper, it provides some reference for the selection of piezoelectric energy capture device in the future and the application of piezoelectric energy capture device in road.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U416.2;TM619
【参考文献】
相关期刊论文 前10条
1 胡洪平;高发荣;薛欢;胡元太;;低频螺旋状压电俘能器结构性能分析[J];固体力学学报;2007年01期
2 胡元太;蒋树农;薛欢;;压电俘能器结构及其力/电耦合作用分析[J];固体力学学报;2010年05期
3 阚君武;唐可洪;邵承会;朱国仁;郑晓培;;压电液压马达的性能分析与测试[J];哈尔滨工程大学学报;2010年08期
4 ;A low frequency piezoelectric power harvester using a spiral-shaped bimorph[J];Science in China(Series G:Physics,Mechanics & Astronomy);2006年06期
5 唐可洪;阚君武;任玉;王淑云;朱国仁;邵承会;;压电发电装置的功率分析与试验[J];吉林大学学报(工学版);2009年06期
6 宋一凡;陈榕峰;;基于路面不平整度的车辆振动响应分析方法[J];交通运输工程学报;2007年04期
7 翁大馨;简支弹簧地基梁及板计算[J];成都科技大学学报;1994年06期
8 郑小平,王尚文,陈百屏;弹性地基无限长梁动力问题的一般解[J];应用数学和力学;1991年07期
9 孙春华;杜建红;汪红兵;尚广庆;;路面振动压电俘能器的性能分析[J];压电与声光;2013年04期
10 蒋树农;郭少华;李显方;;单压电片悬臂梁式压电俘能器效能分析[J];振动与冲击;2012年19期
,本文编号:1944491
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1944491.html