内河大水位差钢护筒嵌岩灌注桩架空直立式码头结构动力分析
发布时间:2018-06-01 18:41
本文选题:架空直立式码头 + 钢护筒钢筋混凝土桩 ; 参考:《重庆交通大学》2014年硕士论文
【摘要】:本文结合“重庆港大水位差深水码头设计、建设关键技术攻关与应用”研究项目,依托重庆果园港码头结构二期工程,针对钢护筒钢筋混凝土桩架空直立式码头结构进行动力响应试验与相应瞬态动力时程分析的数值模拟。主要研究内容及结论如下: (1)利用有限元软件Ansys对该种结构型式码头的试验模型结构进行了模态分析,得到结构的动力特性。通过得到的结构频率与振型对结构的刚度分布情况进行分析,分析显示结构中横向构件使排架具有较好的整体性和较大刚度,而纵向构件所能提供的刚度补强偏弱,指出应当适当加强码头结构的纵向刚度,提出对结构的优化,为相关设计提供参考。 (2)依据码头原型结构进行码头模型结构设计,完成了模型材料的确定,材料参数的确定,模型材料的换算,模型的制作,加载设计、测点断面的布置,进而完成了码头结构的动力响应试验。利用专业函数绘图软件origin7.5对试验数据进行非线性拟合处理。 (3)利用有限元软件Ansys建立考虑钢护筒与钢筋混凝土桩接触的实体模型,进行结构瞬态动力时程分析,并将计算结果与试验数据进行对比,二者吻合程度较好。得到码头结构中钢筋混凝土桩、钢横撑、钢靠船立柱以及钢前撑等构件的力学表现,指出在水平动载作用下结构中的薄弱位置,可为该类型式的码头结构的优化布置设计提供参考。 (4)有限元计算结果显示,结构中节点位移、应力等响应时程峰值均出现于荷载时程峰值之后,说明能量在结构中的传递有一定滞后效应;钢护筒钢筋混凝土桩在水平动载作用下,钢护筒构件的等效应力峰值普遍大于钢筋混凝土桩,说明结构受载时,钢护筒承受较大的能量传递而钢筋混凝土桩的力学性能发挥不够充分;前排桩岸侧与江侧的等效应力峰值趋势为先增大后减小再增大,而后三排桩岸侧与江侧的等效应力峰值呈现先减小再增大,然后再减小,最后再增大的趋势,应力变化转折处多集中在钢横撑、钢前撑及钢护筒底部。
[Abstract]:Based on the research project of "Design, Construction and Application of key Technologies for Deepwater Wharf with Water level difference in Chongqing Port," this paper relies on the second phase of the structure of Chongqing Orchard Port. The dynamic response test and the numerical simulation of the transient dynamic history analysis of the steel-protected reinforced concrete pile-mounted vertical wharf structure are carried out. The main contents and conclusions are as follows: 1) the modal analysis of the test model structure of the structure type wharf is carried out by using the finite element software Ansys, and the dynamic characteristics of the structure are obtained. The stiffness distribution of the structure is analyzed by the frequency and mode of the structure obtained. The analysis shows that the transverse members of the structure make the bent frame have better integrity and greater stiffness, while the longitudinal members can provide weak stiffness. It is pointed out that the longitudinal stiffness of the wharf structure should be strengthened properly and the optimization of the structure should be put forward to provide reference for the related design. According to the prototype structure of the wharf, the model structure of the wharf is designed. The determination of the model material, the determination of the material parameters, the conversion of the model material, the making of the model, the loading design, the layout of the section of the measuring point are completed. Then the dynamic response test of wharf structure is completed. This paper deals with the nonlinear fitting of test data by professional function drawing software origin7.5. The finite element software Ansys is used to establish a solid model considering the contact between the steel retaining cylinder and the reinforced concrete pile. The transient dynamic time history analysis of the structure is carried out, and the calculated results are compared with the experimental data, and the results are in good agreement with each other. The mechanical behaviors of reinforced concrete pile, steel transverse brace, steel berthing column and steel front brace in wharf structure are obtained, and the weak position of the structure under horizontal dynamic load is pointed out. It can provide reference for the optimal layout design of this type of wharf structure. 4) the results of finite element analysis show that the peak value of response time history such as node displacement and stress appears after the peak value of load history, which indicates that the energy transfer in the structure has a hysteresis effect. Under the action of horizontal dynamic load, the peak value of equivalent stress of steel retaining tube members is generally greater than that of reinforced concrete piles, which shows that when the structure is loaded, However, the mechanical properties of reinforced concrete piles are not played well enough, and the peak equivalent stress of the bank side of the front row pile and the river side increases firstly and then decreases and then increases. The peak value of the equivalent stress of the bank side and the river side of the third row pile first decreases and then increases, then decreases, and then increases again. The stress change turning point is concentrated in the steel transverse brace, the steel front brace and the bottom of the steel guard tube.
【学位授予单位】:重庆交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U656.124
【参考文献】
相关期刊论文 前6条
1 黄建勇;王多垠;石兴勇;;内河架空直立式集装箱码头结构特性的模态分析[J];重庆交通大学学报(自然科学版);2008年03期
2 周世良;吴飞桥;王全;李丰华;;三峡库区架空墩式散货码头结构模态分析[J];港工技术;2010年03期
3 严国敏;日本大芝桥的设计与施工[J];国外桥梁;1997年04期
4 徐卫军;雷国刚;厉泽逸;;高桩梁板码头晃动原因分析及处理对策[J];水运工程;2011年02期
5 汪承志;刘建国;石兴勇;;钢护筒与钢筋混凝土联合受力的内河大水差架空直立式码头力学特性分析[J];水运工程;2012年06期
6 刘建国;汪承志;潘时蕴;;大直径钢护筒、钢横撑与钢筋混凝土桩基联合受力的节点力学性状研究[J];水运工程;2013年09期
,本文编号:1965231
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/1965231.html