TBM支撑推进换步机液系统数字仿真分析
本文选题:硬岩掘进机 + 联合仿真 ; 参考:《天津大学》2014年硕士论文
【摘要】:本文紧密结合国家863课题“大直径全断面隧道掘进装备及重大工程机械装备研究”和973课题“硬岩掘进装备的关键基础问题”,以研究TBM的主机系统特性为目的,对其支撑-推进-换步系统进行了建模和仿真分析。旨在对纠偏系统、推进系统等进行详细准确的数字化建模,并在此基础上对其特性进行分析。在详细介绍了TBM主机系统,尤其是其支撑-推进-换步系统的机械结构功能并设计了液压系统的基础上,确定了TBM的主要工作步骤和各部分关节间的相互运动形式,分析并确定了TBM推进液压缸部分的四缸连通结构及其强机液耦合特性,为后文的数字模型建立和仿真分析奠定了基础。为了解决其多系统耦合特性的仿真问题,采用联合仿真的方式进行分析。建立了推进系统的机械、液压和控制系统模型,正确添加联合仿真模块和通讯接口,建立了软件间的联系,在合理添加围岩边界条件的基础上对其纠偏系统动态特性进行了仿真。分析了TBM支撑-推进-换步系统在正常推进过程中由于受力原因造成偏载时纠偏系统的动态响应,重点分析了载荷波动频率、载荷形式、液压油源参数、推程以及液压元件参数对纠偏性能的影响,同时提出了纠偏率这一性能评价指标。针对TBM系统设计中高刚度这一重要设计指标,对推进系统部分零部件进行了有限元网格划分,对掘进中整机刚度情况进行了研究。分析了不同推程下整机刚度的变化,以及系统各部分零部件对整机刚度的贡献情况,得出了一系列应力和变形云图以及刚度变化趋势。其中重点对液压系统的等效刚度进行了计算,得出了整机刚度的薄弱环节,并由此提出了提高整机刚度的几种解决方案。文章采用数字仿真的方式对TBM推进系统的特性进行详细分析,得出一系列重要结论和规律,为项目后续的数字样机建立,试验台搭建,乃至样机的研制生产提供重要技术支撑。
[Abstract]:In this paper, the main purpose of this paper is to study the characteristics of TBM mainframe system by combining the national 863 project "study of large-diameter full-section tunneling equipment and major construction machinery equipment" and 973 project "key basic problems of hard rock tunneling equipment", in order to study the characteristics of TBM mainframe system. The modeling and simulation of the supporting-propulsion-step-changing system are carried out. The aim of this paper is to carry on the detailed and accurate digital modeling of the correction system and the propulsion system, and to analyze the characteristics of the system. On the basis of introducing in detail the mechanical structure function of TBM mainframe system, especially its supporting, propulsive and changing step system and designing hydraulic system, the main working steps of TBM and the mutual motion form of each part of joints are determined. The four-cylinder connection structure of TBM propulsion hydraulic cylinder and its strong mechanical and liquid coupling characteristics are analyzed and determined, which lays a foundation for the establishment of digital model and simulation analysis later on. In order to solve the problem of multi-system coupling, the method of joint simulation is used. The mechanical, hydraulic and control system models of the propulsion system are established, the joint simulation module and communication interface are added correctly, and the relationship between the software is established. Based on the reasonable addition of surrounding rock boundary conditions, the dynamic characteristics of the correction system are simulated. In this paper, the dynamic response of the bias correction system of TBM brace-propulsive and changing step system during normal propulsion is analyzed, and the load fluctuation frequency, load form and hydraulic oil source parameters are analyzed, especially, the load fluctuation frequency, load form and hydraulic oil source parameters are analyzed, and the load fluctuation frequency, load form and hydraulic source parameters are analyzed. The influence of push range and hydraulic component parameters on the deviation correction performance is also presented, and the performance evaluation index of deviation correction rate is put forward. Aiming at the important design index of high stiffness in the design of TBM system, the finite element mesh of some parts of the propulsion system is carried out, and the stiffness of the whole machine in the driving process is studied. The variation of the stiffness of the whole machine and the contribution of parts and components of the system to the stiffness of the whole machine are analyzed. A series of stress and deformation cloud diagrams and the change trend of the stiffness are obtained. The equivalent stiffness of hydraulic system is calculated, the weak link of the stiffness of the whole machine is obtained, and several solutions to improve the stiffness of the whole machine are put forward. In this paper, the characteristics of TBM propulsion system are analyzed in detail by means of digital simulation, and a series of important conclusions and rules are obtained, which provide important technical support for the construction of digital prototype, the construction of test bench, and the development and production of prototype.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U455.31
【参考文献】
相关期刊论文 前10条
1 李玉波;;当金山特长隧道钻爆法与TBM施工地质条件分析[J];铁道建筑;2012年12期
2 ;The three-dimension model for the rock-breaking mechanism of disc cutter andanalysis of rock-breaking forces[J];Acta Mechanica Sinica;2012年03期
3 刘勋;刘玉;李新有;柏峰;张云飞;;液压伺服控制系统的液压弹簧刚度和机械负载刚度耦合特性分析[J];钢铁技术;2012年02期
4 王国栋;何友辉;肖聚亮;单庆臣;周学均;;基于AMESim的筒阀多缸同步系统建模及动态特性仿真[J];天津大学学报;2011年10期
5 谢地;权龙;;基于ADAMS和AMEsim的装载机联合仿真[J];矿山机械;2011年10期
6 王梦恕;谭忠盛;;中国隧道及地下工程修建技术[J];中国工程科学;2010年12期
7 刘术臣;;TBM技术发展方向及其国内应用前景[J];铁道建筑技术;2010年S1期
8 马如奇;郝双晖;郑伟峰;郝明晖;宋宝玉;;基于MATLAB与ADAMS的机械臂联合仿真研究[J];机械设计与制造;2010年04期
9 时峰;;LMS Virtual.Lab Motion新一代多体动力学软件[J];CAD/CAM与制造业信息化;2008年12期
10 茅承觉;;我国全断面岩石掘进机(TBM)发展的回顾与思考[J];建设机械技术与管理;2008年05期
相关博士学位论文 前3条
1 冯斌;液压油有效体积弹性模量及测量装置的研究[D];浙江大学;2011年
2 王静;大流量液压源恒温恒压控制及油液弹性模量研究[D];浙江大学;2009年
3 王友渔;一类球坐标型混联机器人静刚度建模理论与方法研究[D];天津大学;2008年
相关硕士学位论文 前3条
1 周鑫;基于Adams与Matlab的汽车电动助力转向系统的联合仿真[D];武汉理工大学;2009年
2 杨扬;模拟盾构推进系统的设计和研究[D];浙江大学;2006年
3 王友渔;可重构混联机械手Tricept和TriVariant的静刚度预估技术研究[D];天津大学;2006年
,本文编号:2072728
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/2072728.html