当前位置:主页 > 科技论文 > 交通工程论文 >

振动压路机无级调幅调频实现的研究

发布时间:2018-06-28 10:25

  本文选题:振动压路机 + 控制系统 ; 参考:《青岛科技大学》2014年硕士论文


【摘要】:振动压路机作为一种在现代化工程建设中必不可少的基础和路面碾压设备。目前单轴旋转激振的振动压路机多为常见,压路机的振动轮在激振力作用下产生振动,激振器机构多是采用偏心块或者偏心轴旋转,这种方式结构简单,现在有多种激振器采用这种结构形式,如单幅的激振器、双幅的偏心块叠加激振器、多幅的偏心块换位叠加激振器、振荡激振器等。但是这些机构只能进行有级调幅,并且不利于实现系统的自动无级调幅控制。一般可通过采用定量马达—变量泵的传动方式来完成压路机的振动频率的调节,其安装过程和调节控制方式都比调幅方便的多。 本文设计的无级调幅调频压路机的振动轮,无级调幅液压控制系统采用齿条油缸—比例阀结构,,利用PID控制方法,采用PWM输入控制信号方式,控制系统的采用可编程逻辑控制器为控制器,并编写相应的控制程序。本文采用电液比例阀控制定量马达—变量泵来进行无级调频。无级调频系统工作时,给电液比例阀一定的电流驱动伺服变量缸,从而工作泵输出相应排量驱动马达旋转,带动激振器工作。在本系统中安装两个高压溢流阀卸载一定的高压来保护系统;还安装补油阀,用来补偿因泄露损失的液压油,保证整个系统正常工作;系统中还安装有冲洗阀,使整个系统中的液压油能得到不断的更新,不仅很好的散热,还能系统清洁油路,本系统很好的实现了无级调幅调频的功能。 为了验证本文设计的压路机无级调幅调频功能,搭建了一个试验台对该振动轮的各项性能进行了全面的试验研究。通过多种数据采集仪器,对压路机滚筒的的各项性能数据进行了记录收集,通过对这些数据分析,得到以下结论: 本课题设计的压路机能够顺利实现无级调频调幅功能,并且振幅的理论分析与设计实现的变化规律相一致,该方案在结构上合理简单,不会增加压路机太多的成本,而且能实现预计的功能需求,基于PID、PWM控制方法的PLC控制系统,在多次开关机运行调试后,系统非常稳定,控制需求能很好的满足。
[Abstract]:At present, the vibration roller with single axis rotating excitation is common, the vibration wheel of the roller produces vibration under the action of exciting force, and the exciter mechanism is mostly rotated by eccentric block or eccentric axis, which is simple in structure. At present, there are many kinds of exciters in this structure, such as single exciter, double eccentric block superposition exciter, multiple eccentric block transposition superposition exciter, oscillating exciter and so on. However, these mechanisms can only carry out stepwise amplitude modulation, and are not conducive to the automatic stepless amplitude modulation control of the system. Generally, the vibration frequency of the roller can be adjusted by using the drive mode of the quantitative motor and variable pump, and the installation process and the regulating control mode are much more convenient than the amplitude modulation. In this paper, the vibrating wheel of stepless amplitude modulation and frequency modulation roller is designed. The stepless amplitude modulation hydraulic control system adopts rack oil cylinder proportional valve structure, pid control method and PWM input control signal. The control system uses the programmable logic controller as the controller, and writes the corresponding control program. In this paper, electrohydraulic proportional valve is used to control quantitative motor-variable pump for stepless frequency modulation. When the stepless frequency modulation system is working, the servo variable cylinder is driven by a certain current of the electro-hydraulic proportional valve, so that the pump outputs the corresponding displacement to drive the motor to rotate and drive the exciter to work. Two high pressure relief valves are installed in this system to protect the system by unloading certain high pressure; oil filling valves are also installed to compensate for the leakage of hydraulic oil to ensure the normal operation of the whole system; there is also a flush valve installed in the system. So that the hydraulic oil in the whole system can be continuously updated, not only good heat dissipation, but also the system can clean the oil path, the system has achieved the function of stepless amplitude modulation and frequency modulation. In order to verify the stepless amplitude modulation and frequency modulation function of the roller designed in this paper, a test rig was set up to study the various performances of the vibratory wheel. Through a variety of data acquisition instruments, the performance data of roller are recorded and collected, and through the analysis of these data, The conclusions are as follows: the roller designed in this paper can realize the stepless frequency modulation and amplitude modulation function smoothly, and the theoretical analysis of the amplitude is consistent with the changing law of the design, and the scheme is reasonable and simple in structure. The PLC control system based on PID-PWM control method is very stable after running and debugging many times, and the control requirements can be satisfied very well.
【学位授予单位】:青岛科技大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U415.521

【参考文献】

相关期刊论文 前10条

1 曾威;刘亚平;侯锁霞;叶红玲;;基于MATLAB/Simulink的振动主动控制系统仿真[J];北京工业大学学报;2006年S1期

2 曹源文,李志勇,梁乃兴;风积砂砂基压实工艺和方法分析[J];重庆交通学院学报;2004年04期

3 刘本学;冯忠绪;邓丽娜;;双频振动压路机的力学模型及仿真研究[J];中国工程机械学报;2006年02期

4 郭建国;振动压路机起振高压的消除[J];工程机械;1999年01期

5 尹继瑶;;振动压路机的振动参数及其取值[J];建设机械技术与管理;2007年02期

6 欧文兴;;振动压路机的主减振系统的设计研究[J];机电技术;2009年03期

7 聂福全;杨晨;聂怡;;国外振动压路机的新型振动技术[J];山东交通学院学报;2006年04期

8 张胜;;振动压路机减振性能影响因素及评价指标[J];交通世界(建养.机械);2010年10期

9 赵昱东;我国振动压路机的新发展[J];建筑机械化;2002年02期

10 葛恒安;国外压路机技术特点与产品发展浅析[J];建筑机械;2001年07期

相关博士学位论文 前1条

1 马学良;振荡压路机压实动力学及压实过程控制关键技术的研究[D];长安大学;2009年



本文编号:2077676

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/2077676.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d1faf***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com