基于压电薄膜的车型分类研究
[Abstract]:The sustained rapid growth of China's socialist economy and the continuous improvement of the people's material standard of living have led to the development of the automobile industry and the increasing purchase of cars. Owning private cars has become a very common phenomenon. On the one hand, it brings great convenience to people's daily life and promotes the further development of social economy. But on the other hand, there are a series of social problems, such as the worsening of traffic environment, the increasing traffic accident rate and the increasing congestion of urban road traffic. At the same time, under the influence of benefit driving and transportation competition, the number of overloaded and overloaded transport vehicles on the road increases year by year, and the damage to the road and other economic and social losses are shocking. On the basis of analyzing the advantages and disadvantages of the existing vehicle classification methods, the paper puts forward the scheme of this paper. The main work of this paper is as follows: (1) the vehicle recognition system based on piezoelectric film is designed in this paper. Through the reasonable laying of high sensitivity piezoelectric film shaft, the data can be measured as accurately as possible. After signal enhancement and filtering, the vehicle wheelbase, axle load, axle number, wheel number, vehicle weight and other parameters are sorted out. (2) the effect of vehicle parameters on vehicle classification is analyzed, and the useful features are selected. This paper focuses on the distribution of axle load of different vehicle models and different axle numbers. In order to strengthen the use of vehicle features as much as possible, a two-layer classifier is designed in this paper. The first layer classifier uses obvious features to classify vehicle models completely and accurately. The two-layer classifier is a fine classifier designed on the basis of analyzing the kernel function and parameter selection of support vector machine. The classifier is used for further subdivision on the basis of the accuracy of the first layer. The experiments show that the two-layer intelligent classifier designed in this paper can effectively utilize the measured data from piezoelectric film. Meanwhile, the axial load data studied in this paper play a better role in classifying the classifier.
【学位授予单位】:天津大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U495;TP391.41
【参考文献】
相关期刊论文 前10条
1 华莉琴;许维;王拓;马瑞芳;胥博;;采用改进的尺度不变特征转换及多视角模型对车型识别[J];西安交通大学学报;2013年04期
2 吕成超;刘伟铭;;基于多传感器的一种新型车型车种分类识别系统[J];科学技术与工程;2011年33期
3 谢辉;董德存;欧冬秀;;基于物联网的新一代智能交通[J];交通科技与经济;2011年01期
4 郝海玲;;高分子压电传感器在交通监测中的应用[J];内蒙古石油化工;2010年03期
5 蔡锦达;张金东;孙福佳;马天驹;;压电电缆应用于高速公路超速超载监测的研究[J];自动化技术与应用;2009年10期
6 苏荣球;;聚偏氟乙烯压电薄膜的研究进展与应用[J];广州广播电视大学学报;2009年03期
7 陈宏;何小海;吴炜;杨晓敏;;应用SVM的三维车型识别技术[J];四川大学学报(自然科学版);2006年06期
8 夏莉英;陈雁;;AT89C51单片机与PC机的通信接口及编程[J];电子工程师;2006年09期
9 艾娜,吴作伟,任江华;支持向量机与人工神经网络[J];山东理工大学学报(自然科学版);2005年05期
10 杜树新,吴铁军;模式识别中的支持向量机方法[J];浙江大学学报(工学版);2003年05期
相关硕士学位论文 前7条
1 袁爱龙;基于视频的汽车车型识别研究[D];电子科技大学;2013年
2 唐晓虎;智能交通系统中车型识别技术研究[D];广西师范大学;2012年
3 朱金海;PVDF压电薄膜及其传感器的制备与性能研究[D];哈尔滨工业大学;2011年
4 钱志伟;智能交通系统中车型识别的研究与应用[D];西安电子科技大学;2011年
5 马蓓;车型识别技术在视频监控中的应用[D];西安电子科技大学;2010年
6 石译雄;基于环形线圈车型识别研究[D];长沙理工大学;2009年
7 徐威;基于红外检测和压电传感相结合的车型自动分类技术研究[D];南京理工大学;2004年
,本文编号:2231426
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/2231426.html