当前位置:主页 > 科技论文 > 交通工程论文 >

城市混凝土连续箱梁高架桥地震易损性调查与分析

发布时间:2018-10-10 13:49
【摘要】:近年来,随着我国社会经济的发展,城市化进程不断加快,各种高架快速交通网络的建设也在不断增加。桥梁作为城市的生命线工程,如果在地震中遭到严重破坏,将造成震后救灾工作的巨大困难,导致巨大的经济损失。现有城市高架桥由于时间的推移,抗震性能降低,且新城市桥梁规范颁布,对城市高架桥的抗震性能提出了新要求。有必要对这些桥梁进行抗震性能评估,并采取适当的抗震加固措施。本文通过对福州城市混凝土高架桥进行调查,应用经验统计法对桥梁进行震害预测。然后在基于调查的基础上,对桥梁的容易损伤构件和桥梁整体进行顺桥向和横桥向地震激励下的理论易损性分析。主要内容包括:(1)总结了桥梁的震害特点以及桥梁结构地震易损性发展研究概况,探讨了地震波输入问题和损伤指标的确定,为后面桥梁损伤指标确定和易损性曲线建立提供理论依据。(2)对福州市主干道和快速路上的城市混凝土高架桥进行调查,统计相关信息,运用经验统计法进行震害预测。(3)详细介绍混凝土高架桥动力模型的建立要点和基准桥的顺桥向地震易损性曲线的建立,并对《城市桥梁抗震设计规范(CJJ166-2011)》和《公路桥梁抗震设计细则(JTG/TB02—01-2008)》进行对比和桥梁在不同规范下易损性的对比。(4)对城市混凝土连续箱梁高架桥进行顺桥向地震易损性分析,探讨墩高、跨径和坡度等参数变化下对板式橡胶支座、盆式滑动支座、盆式固定支座和固定墩等桥梁最不利构件的易损性影响,以及对支座整体和全桥易损性的影响。(5)对基准桥的各构件进行顺桥向和横桥向易损性曲线对比,并探讨城市混凝土连续箱梁高架桥横桥向地震下,墩高、跨径和坡度等参数变化下对板式橡胶支座、盆式滑动支座、盆式固定支座和固定墩等桥梁最不利构件的易损性影响,以及对全桥整体易损性的影响。通过以上的对比分析,得出相应的规律和结论,可以为桥梁的抗震加固提供一定依据。
[Abstract]:In recent years, with the development of China's social economy, the process of urbanization is accelerating, and the construction of various elevated express transportation networks is also increasing. As the lifeline engineering of the city, if the bridge is seriously damaged in the earthquake, it will cause great difficulties in the disaster relief work after the earthquake, resulting in huge economic losses. Due to the passage of time, the seismic performance of the existing urban viaducts is reduced, and the new urban bridge code is issued, which puts forward new requirements for the seismic performance of urban viaducts. It is necessary to evaluate the seismic performance of these bridges and take appropriate seismic reinforcement measures. Based on the investigation of Fuzhou City concrete viaduct, the earthquake damage of the bridge is predicted by means of empirical statistics. Then, based on the investigation, the theoretical vulnerability analysis of the bridge components and the whole bridge subjected to the seismic excitation in the direction of the bridge and the transverse direction is carried out. The main contents are as follows: (1) the characteristics of earthquake damage of bridges and the development of seismic vulnerability of bridge structures are summarized, and the problem of seismic wave input and the determination of damage index are discussed. It provides a theoretical basis for the determination of damage index and the establishment of vulnerability curve. (2) the investigation of urban concrete viaducts on main roads and expressways in Fuzhou is carried out, and the relevant information is counted. The main points of establishing dynamic model of concrete viaduct and the establishment of seismic vulnerability curve in forward direction of reference bridge are introduced in detail by means of empirical statistical method. (3) the main points of establishing dynamic model of concrete viaduct are introduced in detail. The comparison between the Code for Seismic Design of Urban Bridges (CJJ166-2011) and the rules for Seismic Design of Highway Bridges (JTG/TB02-01-2008) and the comparison of the vulnerability of bridges under different specifications are made. (4) the seismic vulnerability of urban concrete continuous box girder viaducts is analyzed. The effects of pier height, span and slope on the vulnerability of the most unfavorable components of bridges, such as plate rubber bearings, basin sliding supports, basin fixed supports and fixed piers, are discussed. And the influence on the vulnerability of the whole and the whole bridge. (5) comparing the vertical and transverse viaduct vulnerability curves of each component of the reference bridge, and discussing the pier height under the transverse earthquake of the city concrete continuous box girder viaduct bridge. The influence of span and slope on the vulnerability of the most unfavorable components of the bridge, such as the plate rubber bearing, the basin sliding support, the basin fixed support and the fixed pier, as well as the overall vulnerability of the whole bridge. Through the comparison and analysis above, the corresponding laws and conclusions can be obtained, which can provide some basis for the seismic reinforcement of the bridge.
【学位授予单位】:福州大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U442.55

【相似文献】

相关期刊论文 前10条

1 赵旭;霍伟光;;钢-混凝土组合结构地震易损性研究的关键问题[J];科技创新导报;2012年07期

2 杜鹏;姜慧;王立新;;广东省样本桥梁地震易损性对比研究[J];华南地震;2012年03期

3 孙建刚;张荣花;蒋峰;;储罐地震易损性数值仿真分析[J];哈尔滨工业大学学报;2009年12期

4 于晓辉;吕大刚;;基于地震易损性解析函数的概率地震风险应用研究[J];建筑结构学报;2013年10期

5 付陟玮;张春明;张东辉;陈妍;左嘉旭;;系统/电厂级地震易损性量化程序开发研究[J];原子能科学技术;2013年S2期

6 马爱武;;建筑结构地震易损性曲线的应用研究[J];中国水运(下半月刊);2010年11期

7 姚保华;;现代城市的地震易损性及其应对策略[J];上海城市管理;2012年05期

8 崔秀丽;韩映忠;;框架-剪力墙结构的地震易损性曲线建立方法[J];广东建材;2014年08期

9 李鸿晶,冯启民;基于地震易损性的框架结构的优化方法[J];地震工程与工程振动;2000年01期

10 孙柏涛;张桂欣;;汶川8.0级地震中各类建筑结构地震易损性统计分析[J];土木工程学报;2012年05期

相关会议论文 前4条

1 Armando Mauro;;减轻地震易损性——一般目标:需考虑的几个问题[A];联合国国际减轻自然灾害十年论文精选本论文集[C];2004年

2 Giovanni Costa;;减轻地震易损性——国际岩石圈计划的一个项目[A];联合国国际减轻自然灾害十年论文精选本论文集[C];2004年

3 吕大刚;于晓辉;王光远;;结构地震易损性理论及其在全寿命优化设计中的应用[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年

4 孙振凯;赵凤新;尹之潜;马桂明;;分省的建筑物地震损失率估计[A];中国地震学会第八次学术大会论文摘要集[C];2000年

相关硕士学位论文 前10条

1 徐立枫;斜拉模型桥地震易损性研究[D];西南交通大学;2015年

2 张戈;东北地区生土民居地震易损性及空间分布研究[D];中国地震局工程力学研究所;2015年

3 杨万标;大跨度钢管混凝土拱桥的地震易损性研究[D];苏州科技学院;2015年

4 李钱;基于地震易损性的防屈曲支撑对不规则超限高层结构抗震性能影响研究[D];广州大学;2015年

5 李煜锰;城市混凝土曲线梁桥地震易损性的调查与分析[D];福州大学;2014年

6 康伟楠;城市混凝土连续箱梁高架桥地震易损性调查与分析[D];福州大学;2014年

7 张荣花;基于可靠性理论的立式储罐地震易损性研究[D];大庆石油学院;2009年

8 索靖;基于位移的地震易损性概率评估方法研究[D];浙江大学;2013年

9 李佩芬;基于模型修正的结构地震易损性研究[D];北京交通大学;2014年

10 高淼;多层住宅砖房地震易损性和可靠性分析[D];中国地震局工程力学研究所;2006年



本文编号:2262018

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/2262018.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4fe9f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com