曲线箱梁桥整体稳定性设计研究
[Abstract]:Because the curved girder bridge can adapt to the terrain environment very well, realize the intercommunication and mutual access of the various directions traffic, at the same time the lines are smooth, bright and quick, have the rhythm sense, so it has been widely used in the city three-dimensional traffic and the high-grade highway. And the main box girder bridge. Because the stress and deformation characteristics of curved girder bridge are quite different from that of straight beam bridge, but in the design and construction of the curved girder bridge, there are some diseases in the design and construction, which can be summed up as follows: the plane displacement of the whole beam body; The overturning and overturning of the outside of the beam and the collapse of the upper beam caused by the instability of the lower pier have caused adverse effects and economic losses to the society. These phenomena all belong to the whole stability problem of curved girder bridge, so how to improve the overall stability of curved girder bridge and avoid the inherent shortage of bridge structure stability is very important in the design. In this paper, the stability geometric design, anti-overturning design and support system design of curved girder bridge are discussed. Especially, the design of supporting system is discussed, and the numerical modeling analysis is carried out by using MIDAS software. There are three chapters in this paper, namely, the fourth, fifth and sixth chapters, from three aspects: plane constrained support, torsional support and consolidation design of pier beam. The radial displacement of curved girder bridge is partly caused by the pure plane force (integral temperature, concrete shrinkage, centrifugal force, braking force) and partly by the radial displacement caused by the torsional deformation of the beam body. The larger the transverse restraint stiffness of the beam is, the smaller the radial displacement of the beam is under the plane force, but at the same time, the larger the radial support reaction force of the restrained support is, so the design should be considered comprehensively according to the concrete situation. Generally speaking, the transverse stiffness of pier beam consolidation is greater than that of fixed support. The tangential displacement constraint of curved girder bridge should not be too strong, otherwise the beam body will produce plane reverse arch and increase radial displacement under the action of integral temperature and concrete shrinkage. Setting the position of torsional bearing will produce great internal force of torque, thus adjust the distribution of torque of beam body, and the effect of adjusting torque of pier beam consolidation is more obvious than that of anti-torsion double support. The torque distribution can be adjusted by preset pivot eccentricity for the single column pier, and the additional reverse torque is linearly related to the eccentricity value. In the middle and side pier, the degree of torque adjustment will be strengthened if the eccentric is carried out at the same time. Basically is only the eccentric middle pier when adjusts the torque value 2 times. When the curvature is large, the eccentricity of the preset bearing can not completely eliminate the tension state of the inner bearing, and the distance between the torsion bearing should be adjusted to avoid the void. The torque distribution of the beam can be adjusted by means of the consolidation of piers and beams, and the pedestal detachment can be avoided. However, the consolidation of pier and beam makes the curved beam bridge form a small rigid frame structure system. With the decrease of pier height and the increase of linear stiffness, the load effect on the pier top is also increasing except for the braking force and centrifugal force, especially the My value of the longitudinal bridge bending moment at the top of the pier is greatly affected, but the influence of the axial force N is negligible. When the pier height is constant, with the increase of the number of consolidation piers, the axial force at the top of the pier and the bending moment of the transverse bridge do not change much, but the bending moment of the longitudinal bridge increases more. The My value generated by other loads increases with the increase of the number of consolidation loads except for the braking force. Therefore, in the design of pier and beam consolidation, comprehensive consideration should be given to the stress of the upper and lower parts of the curved bridge, weighing the advantages and disadvantages. When the height of the pier is less than 5-10m and the linear stiffness is larger, the less the piers should be consolidated, and the more symmetrical consolidation of the long side piers is avoided at the same time.
【学位授予单位】:重庆交通大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:U442.5;U448.213
【相似文献】
相关期刊论文 前10条
1 邓学军,于咏,黄晓惠;后盐立交桥曲线梁设计简介[J];辽宁交通科技;2004年12期
2 杜嘉斌,罗旗帜,张学文;计算连续曲线梁桥的有限段法[J];佛山科学技术学院学报(自然科学版);2004年04期
3 田秀兰,陈伏立;曲线梁桥设计理论述评[J];福建建筑;2005年Z1期
4 姜海丽;苏辉;赵伟;;曲线梁桥的设计[J];黑龙江水利科技;2006年03期
5 柳爱群;杨中;杨华勋;;公路曲线梁桥设计与施工若干问题研究[J];广东建材;2007年10期
6 孔德伟;;曲线梁桥的受力施工特点及设计方法[J];黑龙江交通科技;2008年12期
7 王文学;康凯乐;张俊勇;张华兵;张海龙;;曲线梁桥荷载横向分配的程序设计与计算[J];华东公路;2008年03期
8 韩超;孔德伟;;曲线梁桥的受力施工特点及设计方法[J];黑龙江交通科技;2009年04期
9 尹萍;;浅谈曲线梁桥设计中应注意的几个问题[J];科技信息;2010年12期
10 李泽洲;;曲线梁桥关键设计浅谈[J];工程建设与设计;2010年09期
相关会议论文 前10条
1 黄正荣;张辛;;小议曲线梁桥设计与计算[A];全国城市公路学会第十八届学术年会论文集[C];2009年
2 潘晓民;;预应力曲线梁桥维修设计与施工[A];中国交通土建工程学术论文集(2006)[C];2006年
3 柳爱群;杨中;尹益辉;;引起混凝土曲线梁桥侧向位移的原因分析[A];第17届全国结构工程学术会议论文集(第Ⅱ册)[C];2008年
4 单德山;李乔;;铁路曲线梁桥地震响应分析[A];第十六届全国桥梁学术会议论文集(下册)[C];2004年
5 焦驰宇;刘陆宇;龙佩恒;;城市曲线梁桥爬移现象及解决措施研究[A];第23届全国结构工程学术会议论文集(第Ⅰ册)[C];2014年
6 孙广华;丁大钧;;计算曲线梁桥预应力钢筋重心线的新方法[A];中国土木工程学会市政工程学会第三次全国城市桥梁学术会议论文集[C];1991年
7 孙颖;卓卫东;房贞政;;公路曲线梁桥抗震研究文献综述[A];防振减灾工程理论与实践新进展(纪念汶川地震一周年)——第四届全国防震减灾工程学术研讨会会议论文集[C];2009年
8 钟建;李照明;;预应力曲线梁桥在设计中应注意的几个问题[A];中国土木工程学会市政工程分会2000年学术年会论文集[C];2000年
9 周若来;陈卫东;;曲线梁桥常见病害与设计要点[A];湖北省公路学会成立三十周年暨二○○八年学术年会论文集[C];2008年
10 陈朝慰;彭大文;;刚构-连续组合曲线梁桥的地震响应研究[A];中国公路学会桥梁和结构工程学会2002年全国桥梁学术会议论文集[C];2002年
相关重要报纸文章 前1条
1 上蔡县公路管理局 关凯华;浅谈公路曲线梁桥的设计和应注意的问题[N];驻马店日报;2014年
相关博士学位论文 前5条
1 邱波;曲线梁桥的非线性计算理论研究及其应用[D];湖南大学;2003年
2 黄新艺;混凝土连续曲线梁桥在车辆荷载作用下的动力响应研究[D];哈尔滨工业大学;2008年
3 孙建鹏;曲线箱梁桥状态传递理论研究[D];西安建筑科技大学;2010年
4 吴桐;铰接构造框架式曲线梁桥三维地震反应的研究[D];东北林业大学;2014年
5 王丽;大跨度立交桥抗震设计理论与方法[D];北京工业大学;2005年
相关硕士学位论文 前10条
1 刘云飞;曲线梁桥的设计理论与工程应用[D];天津大学;2004年
2 杨忠平;曲线梁桥若干问题的研究[D];华中科技大学;2005年
3 张平;曲线梁桥常见病害分析与设计优化[D];长安大学;2013年
4 白伟;曲线梁桥在地震作用下的碰撞反应分析[D];长安大学;2015年
5 王聪;曲线梁桥的地震反应分析与减隔震研究[D];长安大学;2015年
6 林丽娟;曲线梁桥的横向“爬移”分析[D];郑州大学;2015年
7 王锦程;独柱式曲线梁桥的稳定性分析[D];河北工业大学;2015年
8 杨莉;曲线箱梁桥整体稳定性设计研究[D];重庆交通大学;2014年
9 胡明刚;曲线梁桥的动力分析及抗震性能研究[D];西南交通大学;2010年
10 秦亮;曲线梁桥纵向弯曲应力的研究[D];重庆交通大学;2010年
,本文编号:2414570
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/2414570.html