当前位置:主页 > 科技论文 > 交通工程论文 >

大跨径悬索桥索鞍处主缆长度计算方法

发布时间:2021-04-07 18:21
  为了充分考虑索鞍对主缆长度的影响,兼顾操作便捷性与计算准确性,提出大跨径悬索桥索鞍处主缆长度解析计算方法.首先,根据主缆与索鞍的几何关系,推导了索鞍处主缆曲线修正算法;然后,利用牛顿-拉菲森迭代法,对所得二元非线性方程组进行求解;最后,选取常见的主索鞍与散索鞍两组算例,验证该方法的可靠性.结果表明:相比于传统算法,减少了6个方程与6个初始输入参数,表达形式更加明确;仅需输入两个参数,且对参数初始值设置没有严格要求,均可达到快速收敛的效果,增强了其可操作性;迭代次数减少50%,计算时间不足传统算法的10%,大大提高了计算效率,且计算精度可满足工程要求.所提出的算法可方便地应用于建设期间主缆曲线长度以及索鞍位置的确定,使大跨径悬索桥的施工控制更为精准,进而确保其成桥状态满足设计要求. 

【文章来源】:哈尔滨工业大学学报. 2020,52(09)北大核心EICSCD

【文章页数】:6 页

【部分图文】:

大跨径悬索桥索鞍处主缆长度计算方法


悬链线缆索示意图

示意图,索鞍,主缆,切点


索鞍处的主缆线形如图2所示,x为水平向,y为竖向. 整体分析时为方便计算,会假设一个虚拟的主缆交点,即图中的理论顶点;本文将局部坐标系原点建立在理论顶点上,其坐标为(0, 0),左侧主缆与索鞍的切点标为切点1,其局部坐标为(x1, y1),右侧主缆与索鞍的切点标为切点2,其局部坐标为(x2, y2),索鞍与主缆接触面为圆弧,索鞍圆心局部坐标为(x3, y3),半径为R. 另外,x1、x2与y1、y2的关系满足悬链线式(1),为推导过程简洁,用y=f(x)来表示.根据左侧主缆与索鞍相切可以得到,切点1与索鞍圆心的连线斜率k1表达式为

【参考文献】:
期刊论文
[1]考虑摩阻力影响的悬索桥索鞍精确算法[J]. 贺拴海,陈英昊,李源.  长安大学学报(自然科学版). 2019(02)
[2]大跨度自锚式悬索桥主梁钢-混结合段模型试验[J]. 秦凤江,周绪红,梁博文,狄谨,涂熙,徐梁晋,邹杨.  中国公路学报. 2018(09)
[3]悬索桥主缆与索鞍间滑移行为及力学特征试验[J]. 王路,沈锐利,白伦华,王渊.  中国公路学报. 2018(09)
[4]空间索面悬索桥空缆线形分析[J]. 张永水,吴章旭,冯伟.  重庆交通大学学报(自然科学版). 2017(02)
[5]混凝土自锚式悬索桥鞍座的精细化模拟方法[J]. 端茂军,李建慧,索小灿,周广盼.  南京工业大学学报(自然科学版). 2016(06)
[6]基于细长梁单元的悬索桥主缆线形分析[J]. 严琨,沈锐利.  计算力学学报. 2016(03)
[7]多塔悬索桥主缆与鞍座抗滑解析计算方法[J]. 柴生波,肖汝诚,王秀兰,任翔.  中国公路学报. 2016(04)
[8]悬索桥索鞍预偏量的牛顿-拉斐森算法[J]. 王邵锐,周志祥,高燕梅,徐健.  中国公路学报. 2016(01)
[9]自锚式悬索桥主缆下料长度精细化计算[J]. 韩旭辉,袁阳光,陈安洋,赵建峰,舒涛.  重庆交通大学学报(自然科学版). 2014(05)
[10]悬索桥主缆与鞍座摩擦特性理论分析方法[J]. 张清华,李乔,周凌远.  中国公路学报. 2014(01)

博士论文
[1]大跨径悬索桥主缆精细化计算研究[D]. 齐东春.西南交通大学 2012
[2]大跨度悬索桥空间几何非线性分析与软件开发[D]. 唐茂林.西南交通大学 2003



本文编号:3123959

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/3123959.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0fde1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com