跨海桥梁上部结构极端波浪(流)作用2019年度研究进展
发布时间:2021-07-08 10:05
随着交通事业的蓬勃发展以及近海岸工程的不断开发,未来将有越来越多的跨海桥梁不断兴建和向复杂海域发展。但跨海桥梁所处海洋环境极为复杂,会遭受风暴潮及海啸等复杂极端灾害的巨大威胁。近年来,学者们对大型跨海桥梁上部结构的极端波浪(流)作用问题开展了相关研究。通过对近年来跨海桥梁上部结构承受极端波浪(流)作用下的理论、数值及试验研究与进展进行了综述,指出波流共同作用的模拟更符合真实的海洋环境,且跨海桥梁上部结构与极端波浪(流)相互作用是一个流固耦合过程,今后需要在数值计算以及水槽试验中考虑跨海桥梁上部结构的动力响应,深入研究跨海桥梁在极端波浪(流)作用下的失效模式和破坏机理。
【文章来源】:土木与环境工程学报(中英文). 2020,42(05)北大核心CSCD
【文章页数】:9 页
【部分图文】:
试验结果与经验公式计算结果对比图[14]
针对跨海桥梁箱型上部结构在波流作用下的受力情况,Huang等[16]结合数值波流水槽,研究了波高、周期、水流流速、水深、箱梁淹没系数以及上部结构几何尺寸对极端波流力进行了分析,确定了影响箱梁上部结构所受极端波流力的关键因素。进一步结合回归方法提出了估算箱梁上部结构所受极端波流力的简便公式。该公式选择无量纲的波高(波陡度)形式来确定波力,将其他因素的影响表示为影响系数,最终在一定应用范围内,给出了估算公式。同样,针对孤立波作用下的箱型上部结构受力,Huang等[17]考虑静水和动水波浪力,建立了跨海桥梁在孤立波作用下所受的波浪荷载的理论计算模型,基于水深、波高以及上部结构淹没深度对所受波浪力的影响,通过求解流体静力学和动力学公式既可以求解得到作用在跨海桥梁上的波浪力。同时,为验证所提出方法的优越性,将所提出的计算方法与现有用于估算桥梁上部结构所受的波浪力计算方法进行比较。采用箱梁桥面板的详细尺寸(如图2所示)和特定波浪条件进行计算。详细误差计算结果如表1所示,该估算方法在计算竖向和水平波浪力上具有最小的相关误差,表明所提出的方法在估计箱梁上孤立波诱导的波浪力方面的准确性和有效性。但同样存在适用范围有限的缺点。由表1见,经验公式大多基于水槽试验和数值仿真结果,并且只针对部分波浪参数、特定结构形式或者几种淹没状态,在应用范围以外无法保证估算结果的准确性。同时,势流理论和Green-Naghdi理论也需要假定流体为无粘无旋流体,无法完整模拟波浪与跨海桥梁上部结构相互作用过程中的波浪破碎现象,在估算结构所受冲击力上仍待进一步深入。
为了研究极端波浪与海流之间的相互作用以及波流共同作用下箱梁上部结构所受波流力,Huang等[16]采用FLOW-3D商业软件并结合源项造波,构建了数值波流水槽,通过在水槽中部添加质量源,并使用随时间变化的体积流率和波面方程实现了Stokes五阶波浪的生成。在入口边界处给出均匀的流速,并根据水槽内部生成Stokes五阶波,实现顺向及逆向波流共同作用的数值模拟。研究表明海流的存在对波流力有显着影响,且与波浪同向的海流将会导致箱型上部结构所受波流力增加。跨海大桥箱形截面主梁与T形截面主梁由于几何构型差异较大,在极端波浪(海啸和飓风)作用下波浪力有较大差别。杨志莹等[24]采用开源软件OpenFOAM对极端波浪作用下箱型和T型上部结构进行受力分析。分别以孤立波、椭圆余弦波模拟海啸和飓风波浪,假设流体为不可压缩粘性流体,通过RANS(Reynolds-Averaged Navier-Stokes)方程和SST(Shear Stress Transport)k-ω湍流模型描述流体的运动,采用VOF(Volume of Fluid)法追踪自由液面。首先,对数值水槽造波效果及波浪力计算结果进行验证,具体水槽布置图如图4所示,为了避免形成反射波,在入流边界及出流边界处设置消波区,入口采用根据波浪类型、水深等给定的速度边界条件及相分数边界条件,在顶端采用压力进出口边界条件,水槽底面及主梁壁面均为无滑移边界。
【参考文献】:
期刊论文
[1]跨海桥梁箱梁结构受波浪力作用试验研究[J]. 张家玮,祝兵,康啊真,黄博. 土木工程学报. 2017(12)
[2]越洋海啸的数值模拟及其对我国的影响分析[J]. 王培涛,于福江,赵联大,刘秋兴. 海洋学报(中文版). 2012(02)
[3]中国的地震海啸及其预警服务[J]. 叶琳,王喜年,包澄澜. 自然灾害学报. 1994(01)
硕士论文
[1]波浪作用下箱梁式跨海桥梁受力试验研究[D]. 张翔宇.华北水利水电大学 2017
本文编号:3271359
【文章来源】:土木与环境工程学报(中英文). 2020,42(05)北大核心CSCD
【文章页数】:9 页
【部分图文】:
试验结果与经验公式计算结果对比图[14]
针对跨海桥梁箱型上部结构在波流作用下的受力情况,Huang等[16]结合数值波流水槽,研究了波高、周期、水流流速、水深、箱梁淹没系数以及上部结构几何尺寸对极端波流力进行了分析,确定了影响箱梁上部结构所受极端波流力的关键因素。进一步结合回归方法提出了估算箱梁上部结构所受极端波流力的简便公式。该公式选择无量纲的波高(波陡度)形式来确定波力,将其他因素的影响表示为影响系数,最终在一定应用范围内,给出了估算公式。同样,针对孤立波作用下的箱型上部结构受力,Huang等[17]考虑静水和动水波浪力,建立了跨海桥梁在孤立波作用下所受的波浪荷载的理论计算模型,基于水深、波高以及上部结构淹没深度对所受波浪力的影响,通过求解流体静力学和动力学公式既可以求解得到作用在跨海桥梁上的波浪力。同时,为验证所提出方法的优越性,将所提出的计算方法与现有用于估算桥梁上部结构所受的波浪力计算方法进行比较。采用箱梁桥面板的详细尺寸(如图2所示)和特定波浪条件进行计算。详细误差计算结果如表1所示,该估算方法在计算竖向和水平波浪力上具有最小的相关误差,表明所提出的方法在估计箱梁上孤立波诱导的波浪力方面的准确性和有效性。但同样存在适用范围有限的缺点。由表1见,经验公式大多基于水槽试验和数值仿真结果,并且只针对部分波浪参数、特定结构形式或者几种淹没状态,在应用范围以外无法保证估算结果的准确性。同时,势流理论和Green-Naghdi理论也需要假定流体为无粘无旋流体,无法完整模拟波浪与跨海桥梁上部结构相互作用过程中的波浪破碎现象,在估算结构所受冲击力上仍待进一步深入。
为了研究极端波浪与海流之间的相互作用以及波流共同作用下箱梁上部结构所受波流力,Huang等[16]采用FLOW-3D商业软件并结合源项造波,构建了数值波流水槽,通过在水槽中部添加质量源,并使用随时间变化的体积流率和波面方程实现了Stokes五阶波浪的生成。在入口边界处给出均匀的流速,并根据水槽内部生成Stokes五阶波,实现顺向及逆向波流共同作用的数值模拟。研究表明海流的存在对波流力有显着影响,且与波浪同向的海流将会导致箱型上部结构所受波流力增加。跨海大桥箱形截面主梁与T形截面主梁由于几何构型差异较大,在极端波浪(海啸和飓风)作用下波浪力有较大差别。杨志莹等[24]采用开源软件OpenFOAM对极端波浪作用下箱型和T型上部结构进行受力分析。分别以孤立波、椭圆余弦波模拟海啸和飓风波浪,假设流体为不可压缩粘性流体,通过RANS(Reynolds-Averaged Navier-Stokes)方程和SST(Shear Stress Transport)k-ω湍流模型描述流体的运动,采用VOF(Volume of Fluid)法追踪自由液面。首先,对数值水槽造波效果及波浪力计算结果进行验证,具体水槽布置图如图4所示,为了避免形成反射波,在入流边界及出流边界处设置消波区,入口采用根据波浪类型、水深等给定的速度边界条件及相分数边界条件,在顶端采用压力进出口边界条件,水槽底面及主梁壁面均为无滑移边界。
【参考文献】:
期刊论文
[1]跨海桥梁箱梁结构受波浪力作用试验研究[J]. 张家玮,祝兵,康啊真,黄博. 土木工程学报. 2017(12)
[2]越洋海啸的数值模拟及其对我国的影响分析[J]. 王培涛,于福江,赵联大,刘秋兴. 海洋学报(中文版). 2012(02)
[3]中国的地震海啸及其预警服务[J]. 叶琳,王喜年,包澄澜. 自然灾害学报. 1994(01)
硕士论文
[1]波浪作用下箱梁式跨海桥梁受力试验研究[D]. 张翔宇.华北水利水电大学 2017
本文编号:3271359
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/3271359.html