基于最小耗能原理的海棠山隧道围岩蠕变损伤模型
发布时间:2021-10-21 16:59
为了研究海棠山隧道围岩的长期稳定性,采用MTS815.02试验机对砂岩展开不同围压作用下的三轴蠕变试验,进而分析了围岩在不同围压作用下的长期变形特性。通过结合最小耗能原理建立损伤模型,以能量角度研究岩石的性能劣化规律和蠕变特性。研究结果表明:岩石在变形过程中的能量耗散规律与岩石内部损伤演化规律是一致的,结合最小耗能原理引入内变量,较好地反映岩石内部应力-应变变化状态,将岩石损伤演化规律以能量变化方式呈现出来,也较好地描述了岩石内部能量耗散具体过程;当施加在岩石的应力水平较高时,才会出现稳定蠕变和加速蠕变现象,否则蠕变变形只有衰减蠕变变形,同时,围压的增高不仅增大了试样的破坏应力水平,同时延缓了轴向蠕变变形。最终通过砂岩蠕变试验曲线与模型曲线的高吻合度,这说明了基于最小耗能原理来建立非线性蠕变损伤模型,对砂岩蠕变全过程演化规律描述是合适可行的,也充分地说明将岩石作为耗散结构来确定岩石损伤程度以及反映岩石蠕变全过程变形规律是正确的;该模型对于不同围压作用下花岗岩蠕变特性也有较好地描述,计算曲线和试验数据拟合度较高,说明了该损伤模型的适用性广泛,对实际工程具有指导意义。
【文章来源】:公路交通科技. 2020,37(06)北大核心CSCD
【文章页数】:8 页
【部分图文】:
试验系统
根据上述试验方法和试验方案,对海棠山隧道围岩进行不同围压的常规三轴压缩蠕变试验,σ3=20 MPa和σ3=30 MPa作用下的分级加载轴向历时蠕变曲线如图2所示。由图2可知,在围压20 MPa作用下,荷载作用4级后发生失稳变形破坏,在围压30 MPa作用下,荷载作用也经历5级后发生失稳变形破坏;瞬时应变和蠕变应变都随着应力水平增大不断增大,且瞬时应变占总应变比例的变化规律呈现先减小后增大趋势。
将不同围压条件下所得蠕变试验数据运用Boltzmann叠加原理[9]进行处理,得到各级轴向蠕变曲线如图3所示。由图3可知,只有当施加在岩石的应力水平较高时,才会出现稳定蠕变和加速蠕变现象,否则蠕变变形只有衰减蠕变变形;以围压30 MPa为例,在σ1=80 MPa时,蠕变速率从初始值衰减至零,最终的蠕变变形为0.110 2%(全部为衰减蠕变);在90 MPa 和100 MPa作用下,衰减蠕变变形时间大约为8 h左右,岩石的蠕变变形便转变为稳定蠕变变形,蠕变速率从初始值衰减至一个稳定值;在最后一级应力水平110 MPa作用下,蠕变变形出现加速蠕变变形,变形与时间之间的规律呈现出明显的非线性变化趋势。同时,围压的增高不仅增大了试样的破坏应力水平,同时延缓了轴向蠕变变形。
【参考文献】:
期刊论文
[1]基于最小能耗原理的花岗岩蠕变损伤分析[J]. 张树光,刘文博,张印,林晓楠. 应用基础与工程科学学报. 2019(01)
[2]参数非定常的软岩非线性黏弹塑性蠕变模型[J]. 刘开云,薛永涛,周辉. 中国矿业大学学报. 2018(04)
[3]岩石非定常Burgers蠕变模型及其参数识别[J]. 韩阳,谭跃虎,李二兵,段建立,濮仕坤. 工程力学. 2018(03)
[4]高埋深储层膏质泥岩蠕变力学特性试验研究[J]. 张玉,王亚玲,张晓东,李静,栾雅琳. 岩土力学. 2017(11)
[5]海棠山隧道砂岩变参数蠕变特性研究[J]. 张树光,孙成鑫,王有涛,林晓楠. 公路交通科技. 2016(10)
[6]断续双裂隙砂岩三轴卸荷蠕变特性试验及损伤蠕变模型[J]. 杨超,黄达,黄润秋,曾彬. 煤炭学报. 2016(09)
[7]基于分数阶导数的非定常蠕变本构模型研究[J]. 何志磊,朱珍德,朱明礼,李志敬. 岩土力学. 2016(03)
[8]考虑渐进性破坏的岩石损伤本构模型研究[J]. 张嘉威,章杨松,李晓昭. 地下空间与工程学报. 2015(06)
[9]硬脆性岩石卸荷流变试验及长期强度研究[J]. 张龙云,张强勇,李术才,江力宇,袁圣渤,杨尚阳,杨文东. 煤炭学报. 2015(10)
[10]基于颗粒流程序的黏弹塑性本构模型开发与应用[J]. 杨振伟,金爱兵,王凯,孟新秋,高玉娟. 岩土力学. 2015(09)
博士论文
[1]岩石蠕变本构模型的辨识及应用[D]. 刘文彬.北京交通大学 2009
硕士论文
[1]砂岩卸荷蠕变特性研究及能量演化分析[D]. 刘文博.辽宁工程技术大学 2017
本文编号:3449383
【文章来源】:公路交通科技. 2020,37(06)北大核心CSCD
【文章页数】:8 页
【部分图文】:
试验系统
根据上述试验方法和试验方案,对海棠山隧道围岩进行不同围压的常规三轴压缩蠕变试验,σ3=20 MPa和σ3=30 MPa作用下的分级加载轴向历时蠕变曲线如图2所示。由图2可知,在围压20 MPa作用下,荷载作用4级后发生失稳变形破坏,在围压30 MPa作用下,荷载作用也经历5级后发生失稳变形破坏;瞬时应变和蠕变应变都随着应力水平增大不断增大,且瞬时应变占总应变比例的变化规律呈现先减小后增大趋势。
将不同围压条件下所得蠕变试验数据运用Boltzmann叠加原理[9]进行处理,得到各级轴向蠕变曲线如图3所示。由图3可知,只有当施加在岩石的应力水平较高时,才会出现稳定蠕变和加速蠕变现象,否则蠕变变形只有衰减蠕变变形;以围压30 MPa为例,在σ1=80 MPa时,蠕变速率从初始值衰减至零,最终的蠕变变形为0.110 2%(全部为衰减蠕变);在90 MPa 和100 MPa作用下,衰减蠕变变形时间大约为8 h左右,岩石的蠕变变形便转变为稳定蠕变变形,蠕变速率从初始值衰减至一个稳定值;在最后一级应力水平110 MPa作用下,蠕变变形出现加速蠕变变形,变形与时间之间的规律呈现出明显的非线性变化趋势。同时,围压的增高不仅增大了试样的破坏应力水平,同时延缓了轴向蠕变变形。
【参考文献】:
期刊论文
[1]基于最小能耗原理的花岗岩蠕变损伤分析[J]. 张树光,刘文博,张印,林晓楠. 应用基础与工程科学学报. 2019(01)
[2]参数非定常的软岩非线性黏弹塑性蠕变模型[J]. 刘开云,薛永涛,周辉. 中国矿业大学学报. 2018(04)
[3]岩石非定常Burgers蠕变模型及其参数识别[J]. 韩阳,谭跃虎,李二兵,段建立,濮仕坤. 工程力学. 2018(03)
[4]高埋深储层膏质泥岩蠕变力学特性试验研究[J]. 张玉,王亚玲,张晓东,李静,栾雅琳. 岩土力学. 2017(11)
[5]海棠山隧道砂岩变参数蠕变特性研究[J]. 张树光,孙成鑫,王有涛,林晓楠. 公路交通科技. 2016(10)
[6]断续双裂隙砂岩三轴卸荷蠕变特性试验及损伤蠕变模型[J]. 杨超,黄达,黄润秋,曾彬. 煤炭学报. 2016(09)
[7]基于分数阶导数的非定常蠕变本构模型研究[J]. 何志磊,朱珍德,朱明礼,李志敬. 岩土力学. 2016(03)
[8]考虑渐进性破坏的岩石损伤本构模型研究[J]. 张嘉威,章杨松,李晓昭. 地下空间与工程学报. 2015(06)
[9]硬脆性岩石卸荷流变试验及长期强度研究[J]. 张龙云,张强勇,李术才,江力宇,袁圣渤,杨尚阳,杨文东. 煤炭学报. 2015(10)
[10]基于颗粒流程序的黏弹塑性本构模型开发与应用[J]. 杨振伟,金爱兵,王凯,孟新秋,高玉娟. 岩土力学. 2015(09)
博士论文
[1]岩石蠕变本构模型的辨识及应用[D]. 刘文彬.北京交通大学 2009
硕士论文
[1]砂岩卸荷蠕变特性研究及能量演化分析[D]. 刘文博.辽宁工程技术大学 2017
本文编号:3449383
本文链接:https://www.wllwen.com/kejilunwen/jiaotonggongchenglunwen/3449383.html