当前位置:主页 > 科技论文 > 金属论文 >

快速伺服刀架的建模与控制算法研究

发布时间:2018-02-02 04:33

  本文关键词: 快刀伺服 压电陶瓷 零相差控制 出处:《中国工程物理研究院》2015年硕士论文 论文类型:学位论文


【摘要】:快刀伺服能够用于精密微结构表面的高效、低成本加工。快刀伺服加工技术的一个关键点是设计满足加工需求的快刀伺服系统,即是设计具有较高的精度、快速响应能力以及良好的指令跟踪性能的快刀伺服系统。需要从快刀伺服系统的设计分析出发,研究影响快刀伺服系统性能的关键影响因素和优化系统设计的方法。基于以上需求,本文分析了快刀伺服原型系统中影响系统性能的关键因素;对其中的关键问题提出相应的解决办法;并通过仿真和实验验证了所提方法。工作内容包括:(1)在分析国内外快刀伺服系统的相关研究基础上,根据其工作原理和性能需求,提出快刀伺服原型系统的原理方案;在原理性方案的基础上建立了压电型快速伺服刀架的模型,并对模型进行了仿真研究,为实验平台的设计构建提供理论支持。(2)根据原理性方案设计构建了快刀伺服原型实验平台;利用原型实验平台展开实验测试和分析。实验结果表明原型平台具有良好的工作性能,位移分辨率优于4nm最大行程达到60.06μm,在150Hz时的行程达到22.08μm,满足设计要求。(3)针对实验测试结果中发现的问题,对系统模型进行了修正。将接触特性纳入模型之后,模型仿真结果与实验结果相符。提出了相移迟滞模型描述压电陶瓷的动态迟滞特性,建模的最大相对误差小于1.5%,利用相移迟滞模型对动态迟滞曲线进行线性化修正,修正后的线性相关系数在0.9992以上。(4)结合控制的需求,基于PID控制算法,将模型前馈和零相差前馈算法引入到跟踪控制算法中,并通过MATLAB(?)程序进行控制仿真。仿真和实验验证的结果表明零相差前馈控制算法具有较好的跟踪控制性能。本文通过上述理论、仿真与实验相结合的研究,分析了快刀伺服刀架的关键参数对系统性能的影响规律;提出了一种基于相移特性的迟滞模型与补偿方法;基于零相差控制原理给出了一种减小跟踪误差的控制算法。为快刀伺服工程样机的研制提供了技术参考。
[Abstract]:Fast knife servo can be used in high efficiency and low cost machining of precision micro-structure surface. One of the key points of fast knife servo machining technology is to design a fast cutter servo system which can meet the need of machining, that is, the design has high precision. Rapid response ability and good command tracking performance of the fast knife servo system. Need to start from the design analysis of the fast knife servo system. The key factors affecting the performance of the fast cutter servo system and the method of optimizing the system design are studied. Based on the above requirements, the key factors affecting the performance of the system in the prototype system of the fast cutter servo system are analyzed in this paper. To propose the corresponding solution to the key problem; The proposed method is verified by simulation and experiment. The work includes: 1) on the basis of analyzing the relevant research of domestic and foreign sharpener servo system, according to its working principle and performance requirements. The principle scheme of the servo prototype system of sharpener is put forward. On the basis of the principle scheme, the model of piezoelectric fast servo tool holder is established, and the simulation of the model is carried out. Provide theoretical support for the design and construction of the experimental platform. The experimental results show that the prototype platform has good performance, and the displacement resolution is better than 4nm and the maximum stroke is 60.06 渭 m. At 150 Hz, the stroke reaches 22.08 渭 m, which meets the design requirements.) aiming at the problems found in the test results, the system model is modified and the contact characteristics are incorporated into the model. The simulation results are in agreement with the experimental results. A phase shift hysteresis model is proposed to describe the dynamic hysteresis characteristics of piezoelectric ceramics. The maximum relative error of the model is less than 1.5%. The phase shift hysteresis model is used to linearize the dynamic hysteresis curve. The modified linear correlation coefficient is above 0.9992. The modified linear correlation coefficient is more than 0.9992. The modified linear correlation coefficient is more than 0.9992. It is based on the PID control algorithm. The model feedforward algorithm and zero phase difference feedforward algorithm are introduced into the tracking control algorithm, and the model feedforward and zero phase difference feedforward algorithm are introduced into the tracking control algorithm. The simulation and experimental results show that the zero-phase feedforward control algorithm has better tracking control performance. The influence of the key parameters of the speed cutter servo tool holder on the performance of the system is analyzed. A hysteresis model and compensation method based on phase shift characteristics are proposed. Based on the principle of zero phase difference control, a control algorithm to reduce the tracking error is presented, which provides a technical reference for the development of the rapier servo engineering prototype.
【学位授予单位】:中国工程物理研究院
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TG502

【相似文献】

相关期刊论文 前5条

1 万飞;杨帆;杨舜洲;冯宗杰;;自由曲面光学零件的慢刀与快刀车削技术分析[J];制造技术与机床;2010年06期

2 刘强;白志斌;王荣奇;左成明;;新型直线回转式快刀伺服装置的性能测试与分析[J];制造业自动化;2014年16期

3 刘润时;;快刀伺服车削相关技术研究[J];黑河学院学报;2014年02期

4 陈武;李克天;刘洪飞;赵荣丽;;基于压电陶瓷驱动的快刀伺服系统的研制[J];制造技术与机床;2014年06期

5 ;[J];;年期

相关博士学位论文 前1条

1 周欢伟;新型快刀伺服器结构动态设计与误差补偿技术[D];广东工业大学;2015年

相关硕士学位论文 前4条

1 万飞;快刀伺服加工关键技术研究[D];国防科学技术大学;2010年

2 陈武;基于压电陶瓷驱动的快刀伺服系统的研制[D];广东工业大学;2014年

3 张泽义;小型单点金刚石超精密车床快刀伺服系统的研究[D];哈尔滨工业大学;2013年

4 唐强;快速伺服刀架的建模与控制算法研究[D];中国工程物理研究院;2015年



本文编号:1483634

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/1483634.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户7be6b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com