新型含铜抗菌钛合金的制备与性能研究
[Abstract]:Titanium alloy is an ideal biomedical material with good biocompatibility, comprehensive mechanical properties, machinability and corrosion resistance. It is widely used in oral and orthopaedic implants. Therefore, how to control the post-implant infection is a thorny problem that plagues medical staff and attracts more and more attention. In view of these problems, how to ensure the mechanical properties and corrosion resistance of Ti-6Al-4V, which is widely used in orthopedics and dentistry, is highly effective. Based on this design idea, a new type of Ti-6Al-4V alloy was designed and developed by adding an appropriate amount of Cu element with antibacterial function, optimizing the original alloy with appropriate casting, forging and heat treatment processes. Ti-6Al-4V-XCu as-cast titanium alloys with different Cu contents were studied by analyzing the microstructure, mechanical properties, antibacterial properties and corrosion resistance of the alloys. The optimum addition of Cu to Ti-6Al-4V-XCu was determined to be 5%. The hot deformation properties of Ti-6Al-4V-5Cu were studied by GLEEBLE3800 thermal simulator. The results showed that the rheological behavior of the alloys was good. The force increases with the increase of strain rate and the decrease of temperature. After a small deformation variable, the flow stress of the alloy reaches its peak value, and then the continuous softening occurs. The instability zone of the hot working diagram of Ti-6Al-4V-5Cu is small. When the deformation temperature is 900-1050.C and the strain rate is 0.001-0.1 s-1, the power dissipation factor reaches 0.48. The constitutive equation for hot deformation of Ti-6Al-4V-5Cu is obtained: _=6.700*1012[sinh(0.014)]2.809exp(-320*103/RT)_=71.4291n{(Z/6.700*1012)1/2809+[(Z/6.700*1012)2/2.809+1]1/2}-6Al-4V-5Cu material after forging and heat treatment. The results show that the optimum heat treatment regime for the comprehensive properties of Ti-6Al-4V-5C u is heating 930.C water quenching + aging air cooling at 600 _ C. The effect of microstructure on the dissolution of Cu2+ and the antibacterial properties of the alloy is discussed by studying the distribution and dissolution mechanism of C u in Ti-6Al-4V-5C U. In Ti-6Al-4V-5Cu, u mainly exists in phase A and phase P in the form of solid solution and intermetallic compound Ti2Cu. Because of the stronger chemical stability of intermetallic compounds, Cu2+ ions are easier to dissolve in the form of solid solution. In addition, the solubility of Cu in the phase P is higher than that in the phase alpha. Heat treatment can change the ratio of alpha to beta, thus changing the ratio of Cu. Distribution of Cu in the alloy. When the P phase in the alloy increases, the distribution of Cu in the alloy is uniform and dispersed, and the dissolution of Cu 2+ ion is easier. The antibacterial property of the alloy is enhanced. The antibacterial property of Ti-6Al-4V-5Cu is investigated by coating method, surface morphology observation and fluorescence staining, and the gradient concentration of Cu 2+ ion is determined for Staphylococcus aureus. The results showed that Ti-6Al-4V-5Cu had strong killing effect on E.coli and Staphylococcus aureus, and could effectively inhibit the formation of bacterial biofilm. The minimum inhibitory concentration of Cu2+ to Staphylococcus aureus was 100 ug/g. The antimicrobial mechanism of L.Ti-6Al-4V-5Cu is that when the alloy contacts with the bacterial liquid, a small amount of Cu2+ ions dissolve from the alloy, and the concentration gradient drives the Cu2+ ions to diffuse from the alloy surface to the bacterial liquid. When the alloy contacts with the bacteria, the bacterial membrane is destroyed and the permeability of the bacterial membrane is increased, resulting in the leakage of proteins and reducing sugars in the bacteria. 2+ ions destroyed the respiratory chain of bacteria, produced a large number of reactive oxygen species, inhibited the growth of bacteria. At the same time, Cu2+ ions destroyed the replication and amplification of bacterial genes, resulting in genotoxicity. Considering the potential toxicity of the dissolution of Cu ions from Ti-6Al-4V-5Cu alloy, MC3T3-El cells were observed by SEM, MTT, cytoskeleton and apoptosis. The cytotoxicity of Ti-6Al-4V-5Cu was studied by experiments. The results showed that Ti-6Al-4V-5Cu alloy surface cells adhered to the wall and grew normally with complete cytoskeleton contour, almost no dead cells were observed, and no early apoptosis was observed. The cell proliferation rate was much higher than 75%. Ti-6Al-4V-5Cu alloy showed good performance. The hemolysis rate of Ti-6Al-4V-5Cu was 0.6%, showing good blood compatibility. The preliminary results also proved that Ti-6Al-4V-5Cu could promote bone formation, in which Cu ion played a key role. Bacteria and cell size and structure of their own adaptation to external adverse stimuli to adjust differences; 2) bacteria and cell-to-material interaction time differences, bacteria are generally killed within 24 hours; 3) before and after the dissolution of Cu 2+ difference, material early dissolution rate of larger Cu 2+ corrosion resistance and biological safety has a close relationship. The corrosion resistance of Ti-6Al-4V-5Cu was studied by electrochemical method. The corrosion resistance of Ti-6Al-4V-5Cu was good in normal saline and Hank's solution. The pitting potential of Ti-6Al-4V-5Cu was 1.37 V and 1.5 V respectively, which accorded with the corrosion resistance standard of human implant materials. Compatibility and blood compatibility. On the basis of not obviously changing the excellent properties of existing titanium alloys, and having strong antibacterial function, it will become a new type of Biomedical Metal materials with great clinical application potential.
【学位授予单位】:大连理工大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TG146.23
【相似文献】
相关期刊论文 前10条
1 朱久进;王远亮;邱荣蓉;邹姝姝;王颖;;环糊精修饰聚乳酸基材料的亲水性及细胞相容性[J];功能材料;2011年01期
2 陈忠敏;罗琴;张瑶琴;刘琼;;丝胶蛋白的细胞相容性和抗菌性能研究[J];丝绸;2012年11期
3 耿芳;谭丽丽;贺永莲;杨敬玉;张炳春;杨柯;;多孔镁表面生物活性β-TCP涂层的制备及其细胞相容性研究[J];稀有金属材料与工程;2009年02期
4 廖立;尹光福;谢克难;康云清;龙沁;赖雪飞;;β-偏磷酸钙/聚乳酸复合骨折内固定材料的细胞相容性[J];复合材料学报;2009年04期
5 孙东豪,吴徵宇,王文宝,李明忠,盛伟华;丝素改性聚氨酯膜的物理性质及其细胞相容性[J];东华大学学报(自然科学版);2005年02期
6 谢佳;鲁雄;张红平;周先礼;屈树新;冯波;翁杰;;硅表面CS/BSA复合微图形的制备及表征[J];高等学校化学学报;2009年11期
7 李文波;胡顺鹏;赵洪石;王冠聪;曹成波;刘宏;王灵平;杨晓宇;;脱细胞真皮基质微结构的碱法调控及其细胞相容性[J];化工学报;2011年02期
8 王碧;岳兴建;覃松;赵兵;;葡甘聚糖-壳聚糖复合膜的制备及细胞相容性评价[J];华东理工大学学报(自然科学版);2006年10期
9 吴琳;徐兴祥;王禄增;荣小芳;田冲;张劲松;;泡沫碳化硅细胞相容性及动物体内植入实验研究[J];无机材料学报;2010年02期
10 张志斌;黎达光;苏智青;万昌秀;;骨修复用聚磷酸钙/壳聚糖复合材料的合成及其细胞相容性[J];复合材料学报;2007年06期
相关会议论文 前10条
1 孟令杰;张晓科;路庆华;;多糖修饰单壁碳纳米管的细胞相容性研究[A];2009年全国高分子学术论文报告会论文摘要集(下册)[C];2009年
2 董敏;刘彦珠;崔昕燕;张秀芳;公衍道;赵南明;;不同脂膜材料细胞相容性的比较研究[A];第七届全国生物膜学术讨论会论文摘要汇编[C];1999年
3 张世昌;王英杰;刘涛;杨光辉;;多种半透膜材料肝细胞相容性的对比研究[A];第一届全国疑难重型肝病大会、第四届全国人工肝及血液净化学术年会论文集[C];2008年
4 杨红军;周玫;李文斌;欧阳晨曦;徐卫林;;超细丝素粉体对聚氨酯细胞相容性的影响[A];2012年全国高分子材料科学与工程研讨会学术论文集(上册)[C];2012年
5 肖飞;邢蕊峰;董晶;赵义平;陈莉;郭刚;张瑞;;温度敏感葡聚糖凝胶的合成及其细胞相容性研究[A];第六届中国功能材料及其应用学术会议论文集(5)[C];2007年
6 郑妍华;刘宣勇;孙皎;;载银纳米结构钛表面的细胞相容性及抗菌性研究[A];2011年第十一届上海地区医用生物材料研讨会——生物材料与再生医学进展论文摘要汇编[C];2011年
7 李权;唐休发;华成舸;;静电纺丝纳米纤维膜作为骨骼肌组织工程支架材料的细胞相容性研究[A];第八次全国口腔颌面—头颈肿瘤会议论文汇编[C];2009年
8 贺庆;敖强;公衍道;张秀芳;;不同脱酸方法对壳聚糖膜纳米拓扑结构及细胞相容性的影响[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年
9 高长有;马列;龚逸鸿;毛峥伟;周杰;刘云肖;何涛;洪奕;冯杰;江兵兵;王ma;马祖伟;竺亚斌;沈家骢;;细胞相容性聚合物组织工程支架[A];中国生物医学工程学会第六次会员代表大会暨学术会议论文摘要汇编[C];2004年
10 段顺;隋刚;蔡琴;杨小平;;β-TCP/碳纳米纤维支架的细胞相容性研究[A];2009年全国高分子学术论文报告会论文摘要集(下册)[C];2009年
相关博士学位论文 前10条
1 经鑫;可降解聚合物多孔支架的制备及其细胞相容性研究[D];华南理工大学;2015年
2 王韶亮;羟基磷灰石涂层硅橡胶生物安全性评价及细胞相容性提高的分子机制[D];第三军医大学;2015年
3 马政;新型含铜抗菌钛合金的制备与性能研究[D];大连理工大学;2015年
4 田冶;表面功能化聚乳酸膜的构建及其细胞相容性评价[D];暨南大学;2008年
5 林园;层层组装蛋白质薄膜及其在改善细胞相容性上的应用[D];吉林大学;2008年
6 王雪峰;基底表面纳米结构的细胞学效应与离子液体的细胞相容性研究[D];上海交通大学;2008年
7 竺亚斌;胺解改性含酯基聚合物生物材料及其细胞相容性研究[D];浙江大学;2003年
8 朱惠光;聚乳酸组织工程材料的细胞相容性表面设计研究[D];浙江大学;2003年
9 马祖伟;聚乳酸软骨组织工程支架制备、改性及其细胞相容性研究[D];浙江大学;2003年
10 陶丹;组织工程用PLA纤维基支架的制备、成型及细胞相容性研究[D];江南大学;2013年
相关硕士学位论文 前10条
1 李娜;绿色荧光石墨烯量子点细胞相容性评价及应用研究[D];兰州大学;2015年
2 刘睿;医用新型Mg-Li-Ca合金材料的体外细胞相容性及生物活性评价[D];青岛大学;2015年
3 王瑜;可降解聚羟基烷基酸酯生物弹性体细胞相容性研究[D];大连医科大学;2015年
4 梁兴宇;胶原涂层的壳聚糖钛复合种植体的制备以及其细胞相容性的研究[D];山西医科大学;2011年
5 刘奕君;钛合金表面含氟聚合物薄膜的制备及其细胞相容性研究[D];兰州大学;2011年
6 刘绪建;表面硅烷化改性纯钛及其细胞相容性研究[D];华南理工大学;2010年
7 杨芷;碳离子硅橡胶改性材料的表面性能及其细胞相容性评价[D];第三军医大学;2013年
8 刘健;纳米含硅羟基磷灰石的制备及其细胞相容性研究[D];华中科技大学;2010年
9 张爱君;新型猪胶原基真皮支架细胞毒性及与细胞相容性的实验研究[D];山东大学;2007年
10 陈玲;食道上皮组织工程支架的构建及其细胞相容性研究[D];宁波大学;2012年
,本文编号:2248624
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2248624.html