镍钛铌形状记忆合金特性的试验与本构模型研究
[Abstract]:Shape memory alloys have been widely paid attention in recent decades due to its unique pseudoelasticity and shape memory effect. The NiTiNb shape memory alloy is an important member of the NiTi-based alloy, and undergoes a certain pre-deformation (about 16%) at a certain temperature (Ms + 30oC), so that a wide phase change hysteresis effect and a better shape memory effect can be obtained, and the connecting piece such as a pipe joint made of the material can be transported and stored at normal temperature so as to greatly facilitate the application. On the other hand, with the development of science and technology, the service conditions of materials and structures are increasingly harsh, and the deformation of the shape memory alloy is inevitably involved in the actual use of shape memory alloy, and the plastic deformation has a significant influence on the inverse phase change stress and the hysteresis temperature of the shape memory alloy. In order to make better use of this material, scholars at home and abroad have carried out a lot of research work on their thermodynamic characteristics. Based on the systematic analysis of the present research situation of shape memory alloy test and the structure behavior of Ni47Ti44Nb9 shape memory alloy in recent years, the mechanical properties of Ni47Ti44Nb9 shape memory alloy have been studied systematically. Based on this, a micro-mechanical model of shape memory alloy and Ni47Ti44Nb9 shape memory alloy considering plastic deformation effect and lamellar microstructure are proposed. The following progress has been made: 1. The experimental study of Ni47Ti44Nb9 shape memory alloy was carried out: the microstructure of the alloy was observed by means of micro-observation and its components were measured. The characteristic phase transformation temperature and tissue state of the alloy were measured by DSC and XRD. On this basis, the uniaxial tensile test and the pure torsion test of the alloy under different temperature conditions and the research on the temperature-raising response characteristics of the alloy were carried out, and the proportional loading of different pull-out ratios under the temperature of Ms + 30oC was studied. The mechanical response of three typical paths and the comparison of the corresponding temperature rise response characteristics were carried out firstly, and the different variants of the internal activation of materials under different loading paths were measured by XRD. The experimental results show that the matrix material is composed of fine strip-shaped austenite, and the Nb-rich phase particles are dispersed in the matrix. The response of the material under tensile and torsional deformation has a significant difference, including the stress-strain curve and the surface topography of the test piece. However, the phase change stress increases with the increase of the ambient temperature; the mechanical response and the temperature rise response of the material under the biaxial path strongly depend on the loading path and recover along the shortest path in the strain space; The single-axis tension and pure torsion loading are different from the martensitic variants activated in the interior of the material, while the variants activated under the two-dimensional loading path of the pull-and-twist two-dimensional loading path are the superposition of the two. the shape memory alloy is regarded as a mixture of a martensite phase and an austenite phase, the martensite phase is taken into consideration as an elastic-phase change (re-orientation)-plastic three parts, the austenite phase is considered to be two parts of an elastic-plastic phase, The structure model of martensite phase and austenite phase was established based on the non-classical plasticity theory. Considering the effect of plastic deformation on the material inverse phase change stress and the phase change lag temperature, the Tanaka phase change control equation was improved. 3. The shape memory alloy model considering plastic deformation and material microstructure was established: the layered microstructure of shape memory alloy sheet was observed based on the experiment. Considering the structure equation set up by the former part, the structure relation of the representative volume unit is established by the coordination relation of internal stress and strain. In this paper, the shape memory alloy polycrystal is considered as a representative cell group set which is oriented with average orientation along the positive twenty-face decent method, and a cross-level shape memory alloy model is obtained considering plastic influence and material microstructure form by using Hill self-consistent method. The elasticity and pseudoelasticity of shape memory alloy were simulated by using the model, and the calculated results agree well with the experimental results. The influence of plastic deformation can be well described. The microstructure model of NiTiNb shape memory alloy is preliminarily developed. Based on the relationship between the martensite phase and austenite phase, the structure model of shape memory alloy is firstly established by using void hypothesis. The microstructure model of NiTiNb shape memory alloy was initially developed by using the method of Mori-Tanaka. The effects of different volume fraction elastic inclusions and elastic-plastic inclusion on the whole and matrix of materials are studied. The results show that the model can describe its response law very well, and finally, the pure torsion and uniaxial tension response of NiTiNb shape memory alloy under different temperatures are studied. In this paper, the material response of three different paths is simulated by the proportional loading of different pull-and-twist ratio, the first pull-back and the first twist, and the experimental results show that the development model can describe the experimental phenomenon better by comparing the numerical results and the experimental results.
【学位授予单位】:重庆大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TG139.6
【相似文献】
相关期刊论文 前10条
1 国文;多孔Ni-Ti形状记忆合金[J];金属功能材料;2000年06期
2 唐卫胜;TiNi形状记忆合金的特性及应用[J];钛工业进展;2000年06期
3 高英俊,陈华宁;形状记忆合金及其在医学中的应用[J];广西物理;2001年01期
4 国文;铜系形状记忆合金的改性研究[J];金属功能材料;2001年03期
5 刘建辉,李宁,文玉华;形状记忆合金的应用[J];机械;2001年03期
6 朱明;神奇的形状记忆合金[J];企业技术开发;2001年10期
7 孙世清,郭志猛,殷声;TiNi形状记忆合金及其多孔体[J];材料导报;2001年02期
8 朱明;神奇的形状记忆合金[J];科技信息;2001年06期
9 周海锋;形状记忆合金及其应用[J];机电设备;2002年05期
10 白玉俊,陈蕴博,徐庆莘;医用多孔Ni-Ti形状记忆合金的研究与应用进展[J];材料导报;2002年09期
相关会议论文 前10条
1 朱玉萍;兑关锁;;磁控形状记忆合金变体重定向的细观力学模型[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
2 周星;樊荣;张文娟;朱明;梁建辉;毛协民;;人工食管用TiNi形状记忆合金的细胞毒性研究[A];2009中国功能材料科技与产业高层论坛论文集[C];2009年
3 冯燕忠;孙丽;张雯;;形状记忆合金在工程中的应用及探讨[A];第八届沈阳科学学术年会论文集[C];2011年
4 刘春雨;涂福泉;许仁波;;磁控形状记忆合金的研究现状及其应用进展[A];2011中国功能材料科技与产业高层论坛论文集(第二卷)[C];2011年
5 董治中;王德法;刘文西;陈金铭;高银露;;微量硼对铁基形状记忆合金的性能影响[A];2000年材料科学与工程新进展(上)——2000年中国材料研讨会论文集[C];2000年
6 秦添艳;;形状记忆合金的发展[A];第四届中国功能材料及其应用学术会议论文集[C];2001年
7 谢诗芳;刘锦文;;添加元素对Cu-11.46Al-2.86Ni形状记忆合金韧性的响影[A];首届中国功能材料及其应用学术会议论文集[C];1992年
8 赵连城;蔡伟;;形状记忆合金的研究进展[A];第二届中国功能材料及其应用学术会议论文集[C];1995年
9 戴自怡;刘晓霞;;形状记忆合金纺织品及其开发[A];第十届长三角科技论坛——纺织分论坛论文集[C];2013年
10 于东;张博明;梁军;武湛君;戴福洪;;形状记忆合金混杂复合材料的力学性能模拟与实验分析[A];复合材料——基础、创新、高效:第十四届全国复合材料学术会议论文集(下)[C];2006年
相关重要报纸文章 前10条
1 李有观;形状记忆合金材料的发展动向[N];中国有色金属报;2005年
2 本报驻美国记者 毛黎;换位思考别有一番洞天[N];科技日报;2012年
3 本报记者 华凌;金属家族里的“变形金刚”[N];科技日报;2012年
4 记者 李鹏;4D打印:开启材料的自我组装时代[N];北京科技报;2014年
5 褚幼义;形状记忆合金,材料新贵族[N];中国有色金属报;2001年
6 李况;新型建筑电子化[N];中国房地产报;2003年
7 仲欣;新材料让建筑更“聪明”[N];中华建筑报;2003年
8 敖宏;记忆合金研发 北京走在前列[N];北京日报;2000年
9 中国科学技术馆 李春才 ;会记忆的金属材料[N];大众科技报;2004年
10 彭新建;日开发出超强磁性制品形状记忆合金[N];中国冶金报;2006年
相关博士学位论文 前10条
1 刘记立;柱状晶组织Cu_(71)Al_(18)Mn_(11)形状记忆合金的性能及制备加工基础研究[D];北京科技大学;2016年
2 陈翔;镍钛铌形状记忆合金特性的试验与本构模型研究[D];重庆大学;2015年
3 王永军;含形状记忆合金复合结构振动特性研究[D];哈尔滨工程大学;2010年
4 王玉龙;形状记忆合金复合材料界面力学特性[D];哈尔滨工程大学;2011年
5 陈斌;镍钛铌形状记忆合金宏细观力学行为研究[D];重庆大学;2013年
6 鲁军;磁控形状记忆合金电磁—机械可逆转换及应用基础研究[D];沈阳工业大学;2010年
7 李明高;TiNi形状记忆合金与不锈钢的连接[D];吉林大学;2006年
8 周博;形状记忆合金的本构模型[D];哈尔滨工程大学;2006年
9 竺致文;用形状记忆合金对转子系统进行主动控制[D];天津大学;2003年
10 朱胜利;多孔TiNi形状记忆合金的研究[D];天津大学;2005年
相关硕士学位论文 前10条
1 柳宾;形状记忆合金振动系统分析与计算[D];天津大学;2009年
2 孟兆华;形状记忆合金复合薄板的非线性动力学研究[D];天津大学;2010年
3 裴丽丽;生物医用TiNi形状记忆合金的制备及性能研究[D];东北大学;2008年
4 袁亭亭;基于SMA的混凝土柱智能预应力加固机理研究[D];山东大学;2015年
5 杨宽;磁控形状记忆合金传感器设计与信号处理研究[D];沈阳理工大学;2015年
6 渠桂丽;Fe-Ni-Co基多晶形状记忆合金的组织与性能研究[D];南昌大学;2015年
7 毛伟科;新型防屈曲支撑耗能减震研究分析[D];河北工业大学;2015年
8 姚康;Fe-Mn-Ga磁性形状记忆合金的结构和磁性能研究[D];东北大学;2013年
9 李宝龙;POM/TPU形状记忆合金的制备与性能研究[D];天津科技大学;2014年
10 宾帅;超弹性形状记忆合金性能试验与力学模型研究[D];湖南科技大学;2015年
,本文编号:2305303
本文链接:https://www.wllwen.com/kejilunwen/jinshugongy/2305303.html