基于混合价值计算的云存储缓存替换方案
发布时间:2018-03-21 14:39
本文选题:云存储 切入点:缓存替换 出处:《计算机工程与设计》2017年06期 论文类型:期刊论文
【摘要】:针对云存储中缓存的实时有效替换问题,提出一种基于多层感知器(MLP)神经网络和缓存对象混合价值计算的缓存替换方案。将采集的云存储访问数据进行预处理,利用LRU算法获得一个初始k-LRU集合;采用k-LRU集的一部分训练MLP神经网络,获得最优窗口大小参数;根据该窗口大小,在考虑缓存对象的下载延迟、访问频率、剩余寿命和成本因素下,计算缓存对象的混合价值,将最低价值的对象进行替换。实验结果表明,该方法能够有效提高缓存命中率,降低访问延迟和成本。
[Abstract]:According to the cache in the cloud storage real-time replacement problem is proposed based on multilayer perceptron (MLP) neural network and hybrid cache object value cache replacement scheme. The acquisition of cloud storage access data preprocessing, using LRU algorithm to obtain an initial k-LRU set; k-LRU set is used as part of the training of MLP neural network, get the optimal window size parameter; according to the window size, considering delay, Download cache object access frequency, residual life and cost factors, the calculation value of hybrid cache object, the object will replace the minimum value. The experimental results show that this method can effectively improve the cache hit rate and decrease the access delay and cost.
【作者单位】: 广州工商学院计算机科学与工程系;广东工业大学计算机学院;
【基金】:广东省青年创新人才类基金项目(2015KQNCX196)
【分类号】:TP333
,
本文编号:1644295
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/1644295.html