基于DNA折纸技术的分子计算模型研究
发布时间:2018-05-16 06:13
本文选题:DNA折纸 + 分子计算 ; 参考:《华北电力大学(北京)》2017年硕士论文
【摘要】:近年来,随着量子计算、光子计算、纳米计算等新兴计算领域的快速发展,DNA纳米计算的研究已经成为前沿热点。纳米计算凭借其天然的微观分子特异性效应,在新型高性能计算的发展中有着举足轻重的地位。DNA自组装折纸技术的发展为纳米微观操控奠定了坚实的基础,拓展了新的维度。基于DNA自组装的纳米芯片具有微观可编程操控性、巨大并行性和高密度信息存储能力,已被广泛应用于复杂计算、信息处理、特异识别、纳米机器、数据存储、密码技术、生物芯片、分子检测等方面。其中,结合纳米颗粒技术的分子计算信息处理方法也逐渐引起学者们的重视。本论文主要利用SARSE、CADNano等软件将计算模型设计编码为DNA链,并利用C语言检测关键运算链的冲突以及稳定性并改进编码方案。通过设计的DNA链自组装形成DNA折纸、链置换实现计算,辅以DNA纳米折纸芯片技术和纳米颗粒等的操控手段,将DNA折纸与分子计算相结合,分别对纳米密码计算模型和分子逻辑门进行多角度多层次研究。一、基于金颗粒自组装的拉姆齐(Ramsey)数求解计算模型。该计算模型将计算机科学中的成型理论方法和纳米技术相结合,对基于DNA纳米芯片技术的分子计算模型展开研究。Ramsey数在逻辑分析中起着重要作用,由于其解空间的复杂性目前仅找到了9个Ramsey数,DNA计算强大的并行性在解决NP完全问题方面取得了突破,我们使用将三角形转换为顶点的图形转换模型提供一个新的分子模型。在构建的计算模型中,我们利用纳米金颗粒(Gold nanoparticle,AuNP)自组装设计特异识别顶点,以便检测解决方案的可行性,并利用计算机仿真模拟检测效果和解空间覆盖率。最后,通过验证Ramsey定理的逆否命题,证明4(3,3)为非解。二、基于DNA折纸上动态排布金颗粒构建的分子逻辑门。分子逻辑门通过DNA链与特定位点的置换关系和特异性修饰,实现纳米颗粒的定点操控、定点释放,由此作为一种通用的信息计算元件。基于该策略建立了一组DNA分子逻辑门(与,或和三输入多数门),其中计算结果通过AuNP和DNA折纸之间的拆解来鉴定。最后,借助电泳和电镜等多重检测,观测得到的结构并解析计算结果。同时,对智能纳米装置和纳米尺度高密度大容量信息加密存储进行基础研究。
[Abstract]:In recent years, with the rapid development of quantum computing, photon computing, nanocomputing and other emerging fields of computing, the research of DNA nanocomputing has become a hot frontier. Because of its natural micromolecular specificity, nanocomputing plays an important role in the development of new high-performance computing. The development of DNA self-assembly origami technology has laid a solid foundation for nano-micro manipulation and expanded new dimensions. Nanochips based on DNA self-assembly have been widely used in complex computing, information processing, specific recognition, nano-machine, data storage, cryptography, and have been widely used in complex computing, information processing, nanometer-machine, data storage, and high-density information storage, with micro-programmable manipulation, huge parallelism and high density information storage. Biochip, molecular detection and so on. Among them, the molecular computing information processing method combined with nanoparticles technology has been paid more and more attention by scholars. In this paper, the software SARSEN CADNano is used to code the computational model into DNA chain, and C language is used to detect the collision and stability of the key operation chain and to improve the coding scheme. The DNA origami was formed by self-assembly of the DNA chain, and the chain replacement was used to realize the calculation. The DNA origami was combined with the molecular calculation by using the DNA nano-origami chip technology and the manipulating means of the nanoparticles. The nanocrystalline cryptographic model and molecular logic gate are studied in multi-angle and multi-level respectively. One is to solve the model based on the Ramsey Ramsey number of gold particles. The model combines the shaping theory and nanotechnology in computer science, and studies the molecular computing model based on DNA nanochip technology. Ramsey number plays an important role in logic analysis. Because the complexity of the solution space has only found nine Ramsey numbers and strong parallelism in solving NP-complete problems, we provide a new molecular model by using the graph transformation model which converts triangles to vertices. In order to detect the feasibility of the solution, we use the gold nanoparticles Gold nanoparticleus AuNPNPA to design special recognition vertices in order to detect the feasibility of the solution, and to simulate the detection effect and the spatial coverage rate by computer simulation. Finally, by verifying the inverse proposition of Ramsey's theorem, it is proved that 4 ~ 3 ~ 3) is a non-solution. Secondly, the molecular logic gate based on the dynamic arrangement of gold particles on DNA origami. The molecular logic gate realizes the fixed point manipulation and release of the nanoparticles through the substitution relationship and specific modification of the DNA chain with the specific site, which is a general information computing element. Based on this strategy, a set of DNA molecular logic gates (with, or with, and three input majority gates) are established, where the results are identified by disassembly between AuNP and DNA origami. Finally, the structure was observed and the calculated results were analyzed by means of electrophoretic and electron microscopy. At the same time, the basic research on intelligent nanodevices and high density and large capacity information encryption storage at nanometer scale is carried out.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP384
【参考文献】
相关期刊论文 前6条
1 王延峰;韩琴琴;韩栋;王燕;张勋才;崔光照;;基于核酸的信息安全技术研究现状及发展建议[J];中国科学院院刊;2014年01期
2 蒋君;殷志祥;;DNA密码对比传统密码学与量子密码学的优势与不足[J];科技视界;2012年24期
3 张成;杨静;许进;;自组装DNA/纳米颗粒分子逻辑计算模型[J];科学通报;2011年27期
4 钱璐璐;汪颖;张钊;赵健;潘敦;张益;刘强;樊春海;胡钧;贺林;;DNA纳米结构仿中国地图[J];科学通报;2006年24期
5 肖国镇;卢明欣;;DNA计算与DNA密码[J];工程数学学报;2006年01期
6 刘红侠,郝跃;薄栅氧化层击穿特性的实验研究[J];半导体学报;2000年02期
,本文编号:1895775
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/1895775.html