襟缝翼控制系统的设计及仿真
本文选题:襟缝翼 + 嵌入式 ; 参考:《北京交通大学》2012年硕士论文
【摘要】:在全人类的发展历史中,早在远古时代,人们就幻想能够像鸟儿那样在天空自由的飞翔,驰骋于蓝天白云之中。飞机是借助于空气飞行的的装置,飞机的襟缝翼便是位于飞机机翼上的一部分可以灵活转动的装置,这样就可以有效的增加飞机机翼的效率。 襟缝翼的控制一般都不是独立的,而是附属于飞机的其它控制系统,对于襟缝翼的驱动主要是液压驱动。或者是简单的电气控制。液压驱动襟翼会出现“剪刀差”现象,使系统复杂化。本文设计的襟缝翼控制系统是基于电机控制的。 本文首先介绍襟缝翼控制系统实现是硬件环境,应用嵌入式开发,在DSP芯片TMS320F2812上实现,开发环境是CCS (Code Composer Studio)。本系统由翼面位置控制器、电机转速控制器和接口数据处理等构成。襟缝翼控制系统的接口方式应用的是RS422(平衡电压数字接口电路的电气特性)标准,系统的输入数据来自采集编码设备,经襟缝翼控制系统处理后的数据发送给驱动解码设备。 在软件实现方面,襟缝翼控制系统由C语言开发,软件系统由上电自检、10ms定时中断和RS422接收中断组成。10ms定时中断主要用来完成周期任务,比如翼面位置控制器、电机转速控制器对输入数据的处理和定期输出电机的输入电压;接收中断主要用来接收数据,只有当有数据传入的时候,才会调用相应的接收函数。 本文设计的襟缝翼控制系统,就是通过驾驶舱的操作杆,飞行员设置襟翼/缝翼的位置状态(位置角度),并通过闭环反馈控制器控制襟翼和缝翼的运动,使之达到目标状态。襟缝翼控制系统,对于襟翼或缝翼的控制是相互独立,且控制原理相同,实现对襟缝翼控制的智能化,并有利于以后对襟缝翼控制系统的扩展,比如当襟缝翼位置确定且长时间不改变时,可以让CPU腾出时间检测各个硬件模块等。 本文的最后,运用mat lab的simulink工具,对本文设计的襟缝翼控制系统进行了仿真,从而来验证第一部分的理论,通过仿真结果,也可以反馈给第一部分,对第一部分进行修改等。另外,本文还介绍了怎么用mat lab进行数据拟合,这就使得,在实验条件允许的情况下,可以采集大量的飞机襟缝翼控制系统的相关数据,找出规律或数学表达式,反过来指导和修改襟缝翼控制系统的相关参数和函数模型。这就使得本文所设计的襟缝翼控制系统具有了一定的实用性。
[Abstract]:In the development history of all mankind, as early as in ancient times, people fantasized that they could fly freely in the sky like birds, galloping in the blue sky and white clouds. Aircraft is the aid of air flight device, the flap-fin is located on the wing of the aircraft part of the device can be flexibly rotated, which can effectively increase the efficiency of the wing of the aircraft. The control of flapflange is not independent, but is attached to other control systems of aircraft. The drive of flapflange is mainly hydraulic drive. Or simple electrical control. Hydraulic-driven flap will appear "scissors difference" phenomenon, making the system complex. The design of the flap-fin control system in this paper is based on the motor control. This paper first introduces the realization of the flap-fin control system is a hardware environment, the application of embedded development, implemented on DSP chip TMS320F2812, the development environment is CCS Code Composer Studio. The system consists of wing position controller, motor speed controller and interface data processing. The interface mode of the slit wing control system is based on the RS422 (Electrical characteristics of balanced Voltage Digital Interface Circuit). The input data of the system come from the acquisition and coding equipment, and the data processed by the slit wing control system is sent to the driver decoding device. In the aspect of software realization, the flap-fin control system is developed by C language. The software system is composed of 10 Ms timing interrupt and 10 Ms RS422 receiving interrupt, which are mainly used to complete periodic tasks, such as wing position controller. The motor speed controller processes the input data and periodically outputs the input voltage of the motor, and the receiving interrupt is mainly used to receive the data, only when the data is passed in, the corresponding receiving function will be called. The flap-fin control system designed in this paper is to set the flap / slit position state (position angle) through the operating lever of the cockpit, and control the flap and slit motion through the closed-loop feedback controller to make it reach the target state. The flapflange control system is independent of each other for flap or slit wing control, and the control principle is the same. It realizes the intelligent control of the flapflange wing, and is conducive to the expansion of the flap-fin control system in the future. For example, when the position of the flapside is determined and not changed for a long time, the CPU can free time to detect the various hardware modules and so on. At the end of this paper, the flap-fin control system designed in this paper is simulated by using the simulink tool of mat lab to verify the theory of the first part. Through the simulation results, it can also be fed back to the first part, and the first part can be modified and so on. In addition, this paper also introduces how to use mat lab to carry out data fitting, which makes it possible to collect a large number of relevant data of aircraft flap-wing control system and find out the law or mathematical expression when the experimental conditions permit. In turn, it guides and modifies the relevant parameters and function models of the flapside control system. This makes the design of the flap-fin control system has a certain practicability.
【学位授予单位】:北京交通大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:V227.6;TP273;TP368.1
【参考文献】
相关期刊论文 前10条
1 于水生;;DSP芯片介绍及其选型[J];单片机与嵌入式系统应用;2006年04期
2 冯元珍;屠小明;罗建平;;MATLAB软件在曲线拟合中的应用[J];福建电脑;2007年03期
3 范立钦;林国锋;;机动襟翼在实现直接升力控制中的应用研究[J];飞行力学;1991年04期
4 忻鼎定,余光志,袁礼;大后掠翼大迎角定常与非定常俯仰气动特性及其控制[J];航空学报;1997年02期
5 高春鸣,黄园媛,陈火旺;基于CCS的软件规范描述及实例研究[J];计算机工程与应用;2005年23期
6 严少波;黄建国;;飞机后缘襟翼运动同步性设计和计算[J];民用飞机设计与研究;2011年01期
7 黄智伟;几款通信用DSP芯片简介[J];世界电子元器件;1999年02期
8 应启珩;数字信号处理器第二讲 实时DSP系统设计开发流程和DSP处理器开发工具简介[J];世界电子元器件;2005年02期
9 付艳茹;;基于MATLAB曲线拟合的应用研究[J];吉林师范大学学报(自然科学版);2010年02期
10 程翔,韩昌彩,袁东风;在初步使用DSP的CCS系统时所遇问题的解答[J];山东电子;2003年02期
相关硕士学位论文 前6条
1 郑云;自适应机翼构型的选择方法研究[D];西北工业大学;2007年
2 张弓;多段翼型缝道流动的相似准则研究[D];西北工业大学;2007年
3 周传祥;基于DSP的导航/飞控嵌入式系统设计[D];西北工业大学;2007年
4 包敦永;民机缝翼机构可靠性若干问题分析与试验方法研究[D];南京航空航天大学;2008年
5 张巍;基于ARM9的嵌入式汽车导航与防盗系统的设计[D];大连海事大学;2009年
6 王承启;嵌入式系统设计方法研究与嵌入式避障机器人的实现[D];北京交通大学;2009年
,本文编号:1951552
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/1951552.html