复杂网络松耦合分布式计算框架的设计与实现
发布时间:2018-07-26 19:28
【摘要】:为更快地计算大尺度复杂网络结构的相关参数,设计并实现一种松耦合分布式计算框架。将分散于网络中的松耦合计算节点汇集起来,通过任务队列使各计算节点共同参与复杂网络的相关分布式计算,并能随时加入或者退出计算,利用分散于网络中松耦合的计算节点提高复杂网络相关分析的计算速度。基于该框架,实现对大尺度复杂网络的平均最短路径长度、网络直径和网络效率的分布式计算。实验结果表明,在保证计算结果正确的前提下,该框架可充分利用网络中闲散的计算资源,提高运算效率。
[Abstract]:A loosely coupled distributed computing framework is designed and implemented in order to calculate the parameters of large-scale complex network structure more quickly. The loosely coupled computing nodes scattered in the network are gathered together, and each computing node can participate in the related distributed computing of the complex network through the task queue, and can join or withdraw from the computation at any time. The computing speed of correlation analysis of complex networks is improved by using loosely coupled computing nodes dispersed in the network. Based on this framework, the distributed computation of the average shortest path length, network diameter and network efficiency for large scale complex networks is realized. The experimental results show that the framework can make full use of the idle computing resources in the network and improve the computational efficiency on the premise that the calculation results are correct.
【作者单位】: 北京化工大学信息科学与技术学院;
【基金】:北京高等学校青年英才计划基金资助项目(YETP0506)
【分类号】:TP338.8;O157.5
[Abstract]:A loosely coupled distributed computing framework is designed and implemented in order to calculate the parameters of large-scale complex network structure more quickly. The loosely coupled computing nodes scattered in the network are gathered together, and each computing node can participate in the related distributed computing of the complex network through the task queue, and can join or withdraw from the computation at any time. The computing speed of correlation analysis of complex networks is improved by using loosely coupled computing nodes dispersed in the network. Based on this framework, the distributed computation of the average shortest path length, network diameter and network efficiency for large scale complex networks is realized. The experimental results show that the framework can make full use of the idle computing resources in the network and improve the computational efficiency on the premise that the calculation results are correct.
【作者单位】: 北京化工大学信息科学与技术学院;
【基金】:北京高等学校青年英才计划基金资助项目(YETP0506)
【分类号】:TP338.8;O157.5
【参考文献】
相关期刊论文 前2条
1 周涛;张子柯;陈关荣;汪小帆;史定华;狄增如;樊瑛;方锦清;韩筱璞;刘建国;刘润然;刘宗华;陆君安;吕金虎;吕琳媛;荣智海;汪秉宏;许小可;章忠志;;复杂网络研究的机遇与挑战[J];电子科技大学学报;2014年01期
2 张俊军;章旋;;ICE中间件技术及其应用研究[J];计算机与现代化;2012年05期
【共引文献】
相关期刊论文 前4条
1 李双双;杨赛霓;刘宪锋;刘焱序;;2008年中国南方低温雨雪冰冻灾害网络建模及演化机制研究[J];地理研究;2015年10期
2 赵义奎;李惠民;王乐挺;徐丙垠;;ICE在配网自动化主站中的应用[J];电力系统保护与控制;2014年01期
3 肖守柏;;智能中间件的管理[J];数字技术与应用;2013年09期
4 杨珉;张家s,
本文编号:2147054
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2147054.html