基于MongoDB的传感器数据分布式存储的研究与应用
[Abstract]:With the development of Internet technology, especially the rapid popularity of mobile Internet services, users in the daily use of a large number of data. In addition, with the popularity of GPS (GPS), sensors, automatic trackers and monitoring systems, these new data sources also produce large amounts of data, which bring new opportunities and challenges to storage, analysis and archiving. In the case of extensive use of sensors, there are new problems in using traditional relational database to store data, such as: with the rapid growth of data, the traditional database can no longer meet the storage and management needs of mass data; Sensors usually collect data at intervals of several seconds, and the data collected have great redundancy and so on. Therefore, it has become a research hotspot in Internet of things applications to seek the sensor data storage scheme with high data storage efficiency. The main work of this paper is to design and implement the data storage interface based on MongoDB database by adopting MongoDB automatic slicing technology to meet the requirement of high concurrency and large amount of data storage of sensor data. In the implementation of the interface, the data storage is provided to the user in the form of virtual interface by encapsulating the operation of the MongoDB database and adding the data compression to the data storage procedure. This paper first describes cloud data management technology, including cloud computing technology NoSQL system and NoSQL database technology. Secondly, the current popular NoSQL data storage is studied. Based on the existing data storage technology, the requirements and characteristics of sensor data storage are analyzed. At the same time, based on the MongoDB document database, the WebService interface suitable for sensor data storage is developed. In order to meet the sensor data high concurrency, cross-platform storage and fast query requirements. Finally, the rotary gate compression algorithm, which is widely used in real-time database, is studied. According to the characteristics of sensor data, the compression algorithm and the secondary filtering method are used in the data compression module of WebService interface. The high compression ratio and the removal of sensor data redundancy are achieved.
【学位授予单位】:南京邮电大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TP393.09;TP333
【引证文献】
相关期刊论文 前7条
1 李晓;;基于MongoDB和Asio的传感器数据存储系统设计[J];电子技术与软件工程;2016年08期
2 陈文艺;闫洒洒;宋亚红;;基于MongoDB的物联网开放平台数据存储设计[J];西安邮电大学学报;2016年02期
3 胡应龙;陈杰;;NoSQL空间数据管理在省级水利数据共享服务平台中的应用[J];测绘通报;2015年12期
4 刘茜;毛善君;武建军;李鑫超;;基于传感网的煤矿瓦斯监测数据发布系统关键技术[J];煤炭科学技术;2015年05期
5 张锡娜;张治中;邓炳光;;移动通信基站天线参数管理系统数据库设计[J];数字通信;2014年06期
6 王彦明;薛云;饶洪;刘斌;奉国和;;图书馆云计算可行性研究[J];现代情报;2014年07期
7 程森;付红阁;;基于Nutch的搜索引擎与HBase的结合 在大数据时代的应用探究[J];计算机光盘软件与应用;2014年12期
相关博士学位论文 前1条
1 翟广宇;基于大数据的医学气象服务方法与技术研究[D];兰州大学;2015年
相关硕士学位论文 前10条
1 刘岩;基于B/S的医药电子商务平台的设计与实现[D];吉林大学;2016年
2 周兴;基于MongoDB的海量大中小文件存储系统的研究与应用[D];中国地质大学(北京);2016年
3 叶忻;基于分布式架构的IP活动库的设计与实现[D];东南大学;2015年
4 吴德宝;关系与非关系数据库应用对比研究[D];东华理工大学;2015年
5 刘潇清;服务器虚拟化在电厂信息化建设中的应用研究[D];华北电力大学;2015年
6 赵俊;社交网络的数据采集与分析方法研究[D];郑州大学;2015年
7 张哲;基于MongoDB与REST的通航云数据中心的设计与实现[D];北京工业大学;2015年
8 马林玲;传感器网络数据管理平台的研究和设计[D];华东师范大学;2015年
9 赵圣楠;基于NoSQL的PDM产品结构网状数据模型[D];沈阳航空航天大学;2015年
10 王智慧;基于NoSQL的智能电网数据云存储研究及应用[D];华北电力大学;2015年
本文编号:2178905
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2178905.html