基于MPI并行框架的实时注意力监测脑机接口的研究与应用
[Abstract]:Attention is a concept of psychology and a subject of research in brain science and bioinformatics. Monitoring people's attention can become an auxiliary tool for people to learn or work, thereby improving their learning and working efficiency, and even reducing the number of serious mistakes, such as learning in the process, If there is a tool to monitor students' attention, the teacher can remind the students when they are not focused, and the students can correct their mental state in time. In combination with computer science and biological information science, we can monitor human attention through brain-computer interfaces. It is a hot research topic to use computer to develop various kinds of BCI. However, at present, most of BCI's types are action types, that is to say, BCI is used to monitor what kind of action the brain is imagining. Then the Brain-Computer Interface (BCI) sends out the same action instructions to the external operation. The typical application of this BCI is the robot arm. However, there is a lack of research on the Brain-Computer Interface (BCI) for the mental state of monitoring attention in real time, because attention involves a lot of psychological knowledge and the research process is more complicated. The development of a real-time monitoring attention application system is less, more is offline processing of the brain computer interface, because the analysis and processing of brain waves is very complex, each processing step in the middle takes a certain amount of time. It is difficult to monitor in real time. In this paper, the current BCI technology and basic theory are deeply analyzed, and a real-time monitoring BCI is developed independently by absorbing the experience and theoretical knowledge of BCI development. And it is applied to monitor the attention of people in learning. The FIR algorithm based on Hanning window is used to extract six eigenvalues and the KNN (k-Nearest Neighbor) algorithm is used to classify the EEG signals. BCI needs a lot of training before it can be applied. Usually, a BCI needs several months' training from the beginning to the end. Therefore, the classification process will reduce the time efficiency with the increase of training data. Moreover, more and more BCI systems are running in pervasive environments, and many devices in pervasive environments have low computing performance, which makes it easier to meet the bottleneck of real-time response. Therefore, it is very important to improve the real-time performance of classifier for real-time application system. In this paper we use the framework of MPI (Message Passing Interface) parallel computing to parallelize the classification algorithm so as to reduce the time consumption of the classification process and achieve the need of real-time application.
【学位授予单位】:兰州大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TP334.7
【相似文献】
相关期刊论文 前10条
1 刘婕,刘灿文;求解一类边界问题的最小曲面的数值并行算法[J];微型电脑应用;2003年03期
2 曾志峰;Linux环境下MPI并行编程与算法实现研究[J];航空计算技术;2004年02期
3 蒋英,雷永梅;MPI中的3种数据打包发送方式及其性能分析[J];计算机工程;2002年08期
4 郝晓云,范玉妹;用图像展示并行效率的实现[J];计算机工程与应用;2003年19期
5 刘华,徐炜民,孙强;基于MPI并行程序的性能评测可视化工具[J];计算机工程;2004年10期
6 朱文明;高诺;;脑机接口技术研究概述[J];信息技术与信息化;2008年06期
7 张国勇;;基于MPI的反应扩散方程的并行计算[J];湖北师范学院学报(自然科学版);2009年02期
8 赵 军,宋君强,孔金珠;基于MPI环境的并行应用软件系统移植[J];计算机工程与设计;2002年06期
9 孙振明;PROFIBUS工业现场总线在烧结自动控制中的应用[J];新疆钢铁;2002年01期
10 刘信安,李佳;基于PC集群系统的MPICH大规模并行计算实现与应用研究[J];计算机与应用化学;2003年05期
相关会议论文 前10条
1 耿丽清;赵丽;元鹏贤;李宏伟;;基于双层稳态视觉诱发电位的脑机接口技术研究[A];中国自动化学会控制理论专业委员会D卷[C];2011年
2 钱久超;夏斌;杨文璐;;基于P300诱发电位的脑机接口技术研究综述[A];全国第21届计算机技术与应用学术会议(CACIS·2010)暨全国第2届安全关键技术与应用学术会议论文集[C];2010年
3 李焱;胡祥云;吴桂桔;廖国忠;;基于MPI的三维大地电磁正反演的并行算法研究[A];中国地球物理2010——中国地球物理学会第二十六届年会、中国地震学会第十三次学术大会论文集[C];2010年
4 许丽;周南;徐泳;;基于MPI的二维稳态温度场并行计算[A];北京力学会第18届学术年会论文集[C];2012年
5 陈连荣;彭朝晖;;高斯射线声场模型在MPI环境下的并行算法设计[A];中国声学学会水声学分会2011年全国水声学学术会议论文集[C];2011年
6 陶霖密;穆煜;杨澍;张中元;马旭龙;;人-车交互系统的设计与实现[A];第18届全国多媒体学术会议(NCMT2009)、第5届全国人机交互学术会议(CHCI2009)、第5届全国普适计算学术会议(PCC2009)论文集[C];2009年
7 王攀峰;杜云飞;周海芳;杨学军;;面向大规模MPI程序的应用级checkpointing技术[A];第15届全国信息存储技术学术会议论文集[C];2008年
8 刘鹏茂;柳建新;刘文R,
本文编号:2181418
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2181418.html