改进粒子群算法在云计算负载均衡中的应用研究
发布时间:2018-08-17 10:34
【摘要】:云计算系统采用虚拟化技术可以更加灵活和高效地分配运算资源,便于管理员根据用户任务需求按需分配云计算资源;但虚拟化后的云计算中心存在种类多样、数量庞大的虚拟机资源,难以将虚拟机合理地放置到物理主机集群上并达到较好的负载均衡;为此,给出了云计算中心虚拟机放置到物理主机的负载均衡模型,采用改进后的粒子群算法(PSO)来求解最优解;最后通过和常用虚拟机放置算法的仿真对比实验,验证了所提云计算负载均衡优化算法的有效性。
[Abstract]:Using virtualization technology, cloud computing systems can allocate computing resources more flexibly and efficiently, which is convenient for administrators to allocate cloud computing resources according to the needs of users, but there are various types of cloud computing centers after virtualization. It is difficult to put the virtual machine on the physical host cluster reasonably and achieve better load balance because of the huge amount of virtual machine resources. Therefore, a load balancing model of virtual machine in cloud computing center is given. The improved particle swarm optimization (PSO) algorithm is used to solve the optimal solution. Finally, the effectiveness of the proposed algorithm is verified by comparing the simulation results with the common virtual machine placement algorithms.
【作者单位】: 四川大学电子信息学院;
【基金】:国家自然科学基金项目(61172181)
【分类号】:TP18;TP302
本文编号:2187333
[Abstract]:Using virtualization technology, cloud computing systems can allocate computing resources more flexibly and efficiently, which is convenient for administrators to allocate cloud computing resources according to the needs of users, but there are various types of cloud computing centers after virtualization. It is difficult to put the virtual machine on the physical host cluster reasonably and achieve better load balance because of the huge amount of virtual machine resources. Therefore, a load balancing model of virtual machine in cloud computing center is given. The improved particle swarm optimization (PSO) algorithm is used to solve the optimal solution. Finally, the effectiveness of the proposed algorithm is verified by comparing the simulation results with the common virtual machine placement algorithms.
【作者单位】: 四川大学电子信息学院;
【基金】:国家自然科学基金项目(61172181)
【分类号】:TP18;TP302
【相似文献】
相关期刊论文 前3条
1 田宏伟;解福;倪俊敏;;云计算环境下基于粒子群算法的资源分配策略[J];计算机技术与发展;2011年12期
2 敬思远;佘X;;基于混合粒子群算法的虚拟数据中心能耗优化[J];计算机工程;2012年15期
3 ;[J];;年期
相关硕士学位论文 前3条
1 苗冬云;基于改进粒子群算法的云任务调度方案研究[D];安徽财经大学;2015年
2 普煜;云银行模型下基于粒子群原理的计算资源定价策略研究[D];云南大学;2012年
3 田宏伟;云计算环境下资源分配策略的研究[D];山东师范大学;2012年
,本文编号:2187333
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2187333.html