野外探险救助信息采集技术的研究与实现
[Abstract]:With the improvement of people's living standard, the activities of field mountaineering and exploration are increasing gradually. With the frequent occurrence of accidents in the field, there is an urgent need for a kind of real-time physiological information for the wearer. Monitoring equipment for direction and attitude information to monitor and alert field explorers. In order to meet the market demand of field exploration and rescue information collection, this paper studies the key information collection technology of field exploration rescue, and designs a new dynamic electronic sphygmomanometer and a digital compass which can be used in the field exploration environment. Taking both as the core, the information monitor of field exploration and rescue is built simply. Firstly, based on the background of field information monitoring and telemedicine monitoring, this paper introduces the development status and background of field information monitoring technology at home and abroad, and discusses the necessity and practical significance of studying field exploration information collection technology. Secondly, the realization of key signal acquisition technology is introduced in detail, and after comparing the merits and demerits of each scheme, a key signal acquisition scheme is put forward in this paper. For this subject, the key signals to be collected include blood pressure, heart rate, movement direction and posture. The signals of blood pressure and heart rate belong to the physiological signals of human body, which are obtained by collecting body surface signals through calculation and realized by dynamic electronic sphygmomanometer. The direction and attitude of motion are mainly realized by the monitoring module of direction and attitude information, that is, the high precision electronic compass. Dynamic electronic sphygmomanometer is designed based on pulse wave velocity measurement of blood pressure, while high precision digital compass is based on geomagnetic navigation theory. Then, the software and hardware design process of dynamic sphygmomanometer and digital compass are described. The stable acquisition of pulse wave signal and the calculation of signal phase difference are the main difficulties in the design of dynamic sphygmomanometer. After comparing all kinds of varistor materials, the PVDF membrane is used as the pulse signal acquisition material. Based on the geomagnetic navigation theory, it is difficult to improve the precision of the compass based on the geomagnetic navigation theory. Finally, the precision of the compass is improved to less than 2 掳by the self-calibration algorithm. Finally, based on a non-invasive dynamic sphygmomanometer and a three-axis digital compass, a field adventure rescue information monitor is designed based on ARM embedded development platform. On the embedded platform with S3C2440 as the core processor, the design of graphical interface, the superposition of menu and the real-time data communication among various modules are completed, and the format and interface of data transmission are designed, which lays the foundation for the realization of remote communication in the future. The system realizes the independent design of the key module, greatly reduces the overall design cost, and adopts the advanced front-end signal acquisition scheme and the appropriate digital signal processing algorithm to ensure the accuracy and real-time performance of the measurement parameters. The proper embedded platform is chosen to achieve dynamic digital real-time output and friendly man-machine interface, and a perfect data output format and hardware interface are designed for further wireless transmission in the future. The establishment of field rescue and monitoring network has laid a good foundation. The project aims at the special field of civil field exploration monitoring. Both the whole system and the two independent modules of electronic sphygmomanometer and digital compass have good application prospects.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TP274.2;TP368.1
【参考文献】
相关期刊论文 前10条
1 李希胜;于广华;;各向异性磁阻传感器在车辆探测中的应用[J];北京科技大学学报;2006年06期
2 徐克;周奇;韦云隆;;无创血压测量[J];重庆工学院学报(自然科学版);2008年01期
3 刘武发,蒋蓁,龚振邦;基于MEMS加速度传感器的双轴倾角计及其应用[J];传感器技术;2005年03期
4 徐金华;许江宁;张晓锋;朱涛;;GPS/磁罗经最优组合导航应用研究[J];弹箭与制导学报;2006年S8期
5 关政军;陈小凤;;磁传感器在航海上的应用[J];大连海事大学学报;2006年02期
6 钱德俊;张哲;胡晨;;NMEA0183协议解析[J];电子器件;2007年02期
7 陈忠义;质子旋进磁力仪[J];地震研究;1982年04期
8 焦学军,房兴业;连续每搏血压测量方法的研究进展[J];航天医学与医学工程;2000年02期
9 李懿;羊彦;;基于DSP和MEMS的人体动作识别系统[J];科学技术与工程;2011年02期
10 王晓春;登山与健康关系的调查研究[J];南京体育学院学报(自然科学版);2002年03期
相关博士学位论文 前2条
1 李顶立;基于脉搏波的无创连续血压测量方法研究[D];浙江大学;2008年
2 徐战亚;可移植嵌入式导航平台关键技术研究[D];中国地质大学;2010年
相关硕士学位论文 前8条
1 王斌;地磁导航综合检测仪的实现及其精确校准技术的研究[D];杭州电子科技大学;2011年
2 陈清文;基于磁阻传感器的载体姿态测量系统的设计[D];南京理工大学;2004年
3 许臣蓉;基于DSP的数字滤波器设计[D];武汉理工大学;2006年
4 宋丽梅;磁阻式电子罗盘的软件集成设计[D];哈尔滨工程大学;2007年
5 莫小鸥;基于PVDF压力传感器的车座人体应力动态监测[D];昆明理工大学;2008年
6 李志颖;基于脉搏波的无创血压检测样机的研究与设计[D];吉林大学;2009年
7 章力;基于ARM的远程生理监护仪的设计与嵌入式低功耗策略的研究[D];东华大学;2009年
8 李声飞;基于WSN的穿戴式人体姿态与健康监护系统的研制[D];重庆大学;2010年
本文编号:2191778
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2191778.html