基于Hadoop的改进的并行Fp-Growth算法
[Abstract]:Frequent pattern mining is an important algorithm in the field of data mining. Frequent pattern mining is widely used in the research of transaction database, time series database and many other kinds of database. However, the traditional Frequent-pattern Growth algorithm (Fp-Growth algorithm for short) will meet the bottleneck in both storage and computation when dealing with large-scale data, which requires parallelization of Fp-Growth algorithm. The existing parallel Fp-Growth algorithms have solved the problem of how to partition database transaction sets, and ensured that the partitioned transaction sets are independent of each other. However, the existing parallel Fp-Growth algorithms and transaction set partitioning lack of load balancing considerations. Therefore, the parallel Fp-Growth algorithm for load balancing is the main problem in this paper. Hadoop is an open source distributed parallel programming framework under the Apache Foundation, which allows computer clusters to deal with large data sets distributed by using simple programming models. Hadoop solves the problem of scheduling and distributed storage in parallel computing. Fault-tolerant processing, network communication and other problems, which make developers only need to pay attention to the algorithm itself, while the system itself scheduling problems are handled by Hadoop. For the above reasons, this paper uses Hadoop framework to implement parallel Fp-Growth algorithm. The main work of this paper is as follows: one is to improve the existing parallel Fp-Growth algorithm, the other is to apply the parallel algorithm to mining frequent user access sequences. Firstly, based on the research of the parallel Fp-Growth algorithm at home and abroad, this paper improves the grouping strategy of the existing parallel Fp-Growth algorithm by using the method of estimating the load of each frequent item. Experiments show that the improved parallel Fp-Growth algorithm is superior to the existing parallel Fp-Growth algorithm, and the proposed algorithm has better load balancing ability and execution efficiency. Secondly, because a large amount of user access information is stored in the Web server log, the hidden and valuable user behavior information can be found from the massive data. Therefore, the proposed algorithm is applied to the field of Web log mining, which is used to mine frequent user access sequences. Based on this application direction, the results can provide guidance and reference for the source websites of the log, and have practical application value and commercial value.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TP338.6
【参考文献】
相关期刊论文 前10条
1 柴黄琪;苏成;;基于HDFS的安全机制设计[J];计算机安全;2010年12期
2 刘永增;张晓景;李先毅;;基于Hadoop/Hive的web日志分析系统的设计[J];广西大学学报(自然科学版);2011年S1期
3 黎宏剑;刘恒;黄广文;卜立;;基于Hadoop的海量电信数据云计算平台研究[J];电信科学;2012年08期
4 陈文波;张秀娟;李林;唐钧;;基于Hadoop的分布式日志分析系统[J];广西大学学报(自然科学版);2011年S1期
5 黄滨;徐勇;吕岩;;基于Hadoop云存储系统在设计院的应用研究[J];信息安全与技术;2012年09期
6 黄解军,潘和平,万幼川;数据挖掘技术的应用研究[J];计算机工程与应用;2003年02期
7 赵卫中;马慧芳;傅燕翔;史忠植;;基于云计算平台Hadoop的并行k-means聚类算法设计研究[J];计算机科学;2011年10期
8 李成华;张新访;金海;向文;;MapReduce:新型的分布式并行计算编程模型[J];计算机工程与科学;2011年03期
9 王振宇;郭力;;基于Hadoop的搜索引擎用户行为分析[J];计算机工程与科学;2011年04期
10 赵立江,何钦铭;一种个性化Web推荐系统的研究与实现[J];武汉理工大学学报(交通科学与工程版);2004年05期
相关硕士学位论文 前2条
1 杨雅双;关联规则的并行挖掘算法研究[D];西安科技大学;2010年
2 杨铭驰;一种基于频繁模式列表的关联规则分类算法研究与实现[D];吉林大学;2012年
,本文编号:2390874
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2390874.html