基于云计算虚拟化平台的内存管理研究
[Abstract]:Cloud computing technology can integrate network, computing, storage and other computer resources, through the network flexible to provide users with a variety of high-quality computing services. Virtualization technology is the foundation of cloud computing, which can realize the efficient management and use of computer resources. Memory virtualization is not only the most complex part of virtualization technology, but also the key to improve the efficiency of virtualization. In the virtualization environment, the memory requirement changes with the running of different applications, but the traditional memory virtualization scheme can not adjust the virtual machine memory efficiently according to the memory usage of the virtual machine. This kind of circumstance often can cause the waste of memory resource of virtualization platform. This paper designs an efficient memory management system based on KVM virtualization technology. The system consists of three parts: virtual machine memory monitor module, virtual machine memory balance module and multi-host memory balance module. Firstly, this paper designs a real-time and accurate memory awareness technology, which is less expensive for host and client than other technologies. Based on the real-time memory usage of virtual machine, this paper designs an efficient strategy of virtual machine memory adjustment combined with ant colony algorithm, which can allocate virtual machine memory reasonably. By combining virtual machine memory balloon technology and virtual machine memory hot addition technology, the two technologies can adjust virtual machine memory efficiently and mutually. Different from other memory management techniques which can only adjust the memory usage under a single host the system can also achieve memory balance between multiple hosts through virtual machine online migration technology. Finally, the experimental results show that the memory management system can not only adjust virtual machine memory efficiently, but also achieve memory balance under multiple hosts. Finally, the comprehensive performance test shows that the system can achieve about 120% of the host computer memory overmatch, greatly improve the utilization of computer memory resources.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP302;TP315
【参考文献】
相关期刊论文 前10条
1 武佳宁;;基于VMware vSphere的数据中心服务器虚拟化解决方案[J];微型电脑应用;2016年09期
2 刘金鑫;董卫宇;王炜;王立新;;基于注解信息的系统虚拟机内存寻址优化技术[J];计算机工程与设计;2016年09期
3 吴岳;;Hypervisor中内存回收技术的改进[J];计算机系统应用;2016年09期
4 李雪竹;陈国龙;;云计算虚拟化平台的内存资源全局优化研究[J];计算机工程;2015年07期
5 黄秋兰;李莎;程耀东;陈刚;;高能物理计算环境中KVM虚拟机的性能优化与应用[J];计算机科学;2015年01期
6 王志钢;汪小林;靳辛欣;王振林;罗英伟;;Mbalancer:虚拟机内存资源动态预测与调配[J];软件学报;2014年10期
7 马腾;;基于云计算的政务信息资源整合与服务模式研究[J];福州大学学报(自然科学版);2014年05期
8 黄俊;王庆凤;刘志勤;王耀彬;;基于资源状态蚁群算法的云计算任务分配[J];计算机工程与设计;2014年09期
9 姚华超;王振宇;;基于KVM-QEMU与Libvirt的虚拟化资源池构建[J];计算机与现代化;2013年07期
10 罗军舟;金嘉晖;宋爱波;东方;;云计算:体系架构与关键技术[J];通信学报;2011年07期
相关硕士学位论文 前2条
1 李传云;KVM虚拟机热迁移算法分析及优化[D];浙江大学;2016年
2 刘永;云计算环境下虚拟机资源调度策略研究[D];山东师范大学;2012年
,本文编号:2393568
本文链接:https://www.wllwen.com/kejilunwen/jisuanjikexuelunwen/2393568.html