不同季节对三河牛血液生化指标及冷热应激相关基因表达的影响
本文选题:三河牛 切入点:冷应激 出处:《内蒙古农业大学》2017年硕士论文
【摘要】:动物冷热应激是制约畜牧养殖业发展的主要因素之一。论文研究内蒙古地区寒冷冬季及炎热夏季对三河牛血液生化指标及冷热应激相关基因表达量的影响,为三河牛冷热应激研究提供相关数据支持及科学依据,并对抗逆性的提高和适应环境具有重要的现实意义。随机选取内蒙古呼伦贝尔市海拉尔区谢尔塔拉牛场三河牛群体中体质健康、体重相近、同胎次(2胎)泌乳中期三河牛。试验分3个阶段进行,即夏季(2015年7月23日-7月29日)、春季(2016年4月24日-4月30日)和冬季(2015年12月28日-2016年1月3日),夏季为热应激期,冬季为冷应激期,春季为非冷热应激期。每个试验阶段选取无亲缘关系的15头牛,共45头。尾静脉采集抗凝血分离淋巴细胞,非抗凝血分离血清为试验样品。测定奶牛不同试验期的生理指标;采用酶联免疫分析试剂盒测定奶牛血清中激素、酶、免疫功能和抗氧化相关指标;利用实时荧光定量RT-qPCR技术测定奶牛冷热应激相关基因mRNA表达量。采用方差分析法分析三河牛血液各指标在冷热应激和非冷热应激时期的差异性。1.生理指标:奶牛的呼吸频率及直肠温度夏季最高,冬季最低。春季直肠温度及呼吸频率分别为38.41℃和27.07次/min,均处于正常水平。直肠温度及呼吸频率夏季显著高于春季和冬季(P0.05),春季显著高于冬季(P0.05)。2.血液生化指标(1)内分泌相关指标:奶牛血清中促肾上腺皮质激素(ACTH)、糖皮质激素(GC)、胰高血糖素(GCG)、葡萄糖(GLU)、促甲状腺激素(TSH)、甲状腺素(T4)、三碘甲状腺原氨酸(T3)含量冬季显著高于夏季和春季(P0.05),春季显著高于夏季(P0.05);生长激素(GH)和胰岛素样生长因子-1(IGF-1)含量春季显著高于夏季和冬季(P0.05),冬季显著高于夏季(P0.05);去甲肾上腺素(NE)含量夏季和冬季均显著高于春季(P0.05),夏季与冬季之间差异不显著(P0.05);肾上腺素(EPI)含量夏季和冬季均显著高于春季(P0.05),冬季显著高于夏季(P0.05);多巴胺(DA)含量三个季节之间差异不显著(P0.05);胰岛素(INS)含量夏季显著高于冬季和春季(P0.05),春季显著高于冬季(P0.05);尿素氮(BUN)含量冬季显著高于夏季和春季(P0.05),夏季与春季之间差异不显著(P0.05)。(2)酶相关指标:奶牛血清中肌酸激酶(CK)和谷丙转氨酶(GPT)含量夏季和冬季均显著高于春季(P0.05),夏季与冬季之间差异不显著(P0.05);乳酸脱氢酶(LDH)、谷草转氨酶(GOT)含量夏季显著高于冬季和春季(P0.05),冬季与春季之间差异不显著(P0.05);碱性磷酸酶(AKP)含量春季显著高于夏季和冬季(P0.05),夏季与冬季之间差异不显著(P0.05)。(3)抗氧化相关指标:奶牛血清中丙二醛(MDA)含量夏季和冬季均显著高于春季(P0.05),夏季与冬季之间差异不显著(P0.05);总抗氧化能力(T-AOC)冬季显著高于夏季和春季(P0.05),春季显著高于夏季(P0.05);谷胱甘肽过氧化物酶(GSP-Px)活性冬季和春季均显著高于夏季(P0.05),冬季与春季之间差异不显著(P0.05);超氧化物歧化酶(SOD)活性春季显著高于夏季和冬季(P0.05),冬季显著高于夏季(P0.05)。(4)免疫功能相关指标:奶牛血清中白介素-2(IL-2)含量春季显著高于夏季和冬季(P0.05),夏季与冬季之间差异不显著(P0.05);白介素-4(IL-4)含量夏季和春季均显著高于冬季(P0.05),夏季与春季之间差异不显著(P0.05);肿瘤坏死因子-α(TNF-α)含量冬季显著高于夏季和春季(P0.05),春季显著高于夏季(P0.05);干扰素-γ(IFN-γ)、免疫球蛋白G(IgG)含量冬季和春季均显著高于夏季(P0.05),冬季与春季之间差异不显著(P0.05)。3.冷热应激相关基因mRNA表达量:三河牛淋巴细胞中HSPA1A、HSPA1B、HSPA8基因mRNA相对表达量夏季和冬季均显著高于春季(P0.05);HSPA1A、HSPA1B mRNA相对表达量夏季显著高于冬季(P0.05);HSPA8基因mRNA相对表达量夏季与冬季之间差异不显著(P0.05)。以上结果说明,血液淋巴细胞中HSP70家族基因mRNA表达量的上升,在一定程度上反映其对动物机体保护水平的提高。
[Abstract]:Animal heat stress is one of the main factors restricting the development of animal husbandry. The research area of Inner Mongolia cold winter and hot summer effect on the expression of Sanhe cattle blood biochemical index and the amount of cold and heat stress related genes, provide data support and scientific basis for the research of cold and heat stress and stress resistance of Sanhe, improve and adapt has important practical significance the environment. Randomly selected from Inner Mongolia District of Hailar City, Hulun Buir Tara group in Sanhe cattle shell physical health, with similar weight, parity (2 births) mid lactation Sanhe cattle. The test is divided into 3 stages, namely the summer (July 23, 2015 -7 29), spring (April 24, 2016 -4 30) and winter (December 28, 2015 -2016 January 3rd) for the summer, heat stress, cold stress period in winter, spring is not cold and heat stress period. Each phase selection of unrelated 15 cows A total of 45 head, tail vein. Acquisition of anticoagulant isolated lymphocytes were isolated from non anticoagulant blood serum as test samples. Determination of physiological indexes of dairy cows in different experimental period; Analysis Kit determination of hormone in serum by ELISA enzyme, immune function and antioxidant index; using real-time fluorescence quantitative RT-qPCR expression was mRNA genes related to cold and heat stress cows. Analyzed by variance analysis of each index of Sanhe blood differences in cold and heat stress and non cold and heat stress period of physiological indexes of dairy cows:.1. respiratory rate and rectal temperature was highest in summer and lowest in winter and spring. The rectal temperature and respiratory rate were 38.41 degrees and 27.07 times /min, rectum are at normal levels. Temperature and respiratory rate significantly higher in summer than in spring and winter (P0.05) was significantly higher than that in spring, winter (P0.05).2. blood biochemical index (1) related indicators of endocrine: cow blood Adrenocorticotropic hormone (ACTH) in Qing Dynasty, Glucocorticoid (GC), glucagon (GCG), glucose (GLU), thyroid stimulating hormone (TSH), thyroxine (T4), three triiodothyronine (T3) content in winter was significantly higher than that in summer and spring, spring significantly (P0.05) higher than in summer (P0.05); growth hormone (GH) and insulin-like growth factor -1 (IGF-1) content in spring was significantly higher than that of summer and winter (P0.05) was significantly higher than that in summer, winter (P0.05); norepinephrine (NE) in summer and winter were significantly higher than those in spring, summer and winter (P0.05) between significant (P0.05); epinephrine (EPI) in summer and winter were significantly higher than those in spring and winter (P0.05) was significantly higher than that in summer (P0.05); dopamine (DA) there was no significant difference between the content of the three season (P0.05); insulin (INS) were significantly higher in summer than in winter and spring, spring significantly (P0.05) the winter is higher than that of urea nitrogen (P0.05); (BUN) in winter was significantly higher than that in summer and spring (P0.05), there was no significant difference between summer and spring (P0.05). (2) enzyme indicators, serum creatine kinase (CK) and alanine aminotransferase (GPT) in summer and winter were significantly higher than those in spring, summer and winter (P0.05) between significant (P0.05); lactate dehydrogenase (LDH), aspartate aminotransferase (GOT) were significantly higher in summer than in winter and spring (P0.05), there was no significant difference between winter and spring (P0.05); alkaline phosphatase (AKP) content in spring was significantly higher than that of summer and winter (P0.05), no significant difference between summer and winter (P0.05). (3) antioxidant related indicators: malondialdehyde (MDA) content in serum were significantly higher than those in spring, summer and winter (P0.05), no significant difference between summer and winter (P0.05); total antioxidant capacity (T-AOC) was significantly higher than that of summer and winter spring (P0.05), P0.0 (spring was significantly higher than that in summer 5); glutathione peroxidase (GSP-Px) activity in winter and spring were significantly higher than those in summer (P0.05), there was no significant difference between winter and spring (P0.05); superoxide dismutase (SOD) activity in spring was significantly higher than that of summer and winter (P0.05) was significantly higher than that in summer, winter (P0.05) (4) relevant indicators. Immune function: cow serum interleukin -2 (IL-2) content in spring was significantly higher than that of summer and winter (P0.05), no significant difference between summer and winter (P0.05); interleukin -4 (IL-4) in spring and summer were significantly higher than that in winter (P0.05), there was no significant difference between summer and spring (P0.05); tumor necrosis factor alpha (TNF- alpha) in winter was significantly higher than that in summer and spring (P0.05) was significantly higher than that in spring, summer (P0.05); interferon gamma (IFN- gamma), immunoglobulin G (IgG) in winter and spring were significantly higher than those in summer (P0.05), there was no significant difference between winter and spring (P0.05).3. cold The expression of mRNA gene related to heat stress: HSPA1A, Sanhe lymphocyte HSPA1B HSPA8 gene, the relative expression of mRNA was significantly higher than that of summer and winter spring (P0.05); HSPA1A HSPA1B, the relative expression of mRNA in summer was significantly higher than that in winter (P0.05); HSPA8 gene relative expression of mRNA in winter and summer without significant difference (P0.05). The above results suggest that the rise in the HSP70 family of mRNA gene expression in peripheral blood, reflect the increase of the animal's level of protection to a certain extent.
【学位授予单位】:内蒙古农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S823
【参考文献】
相关期刊论文 前10条
1 张燕;敖日格乐;王纯洁;姜晶;赵称赫;吴宏军;;冷应激对荷斯坦奶牛与三河牛的维持行为和抗氧化性能的影响[J];动物医学进展;2016年03期
2 张寿;布仁朝格图;马玉林;仁青加;李福寿;;柴达木黄牛、牦牛、犏牛在发情期血清中三碘甲状腺素、甲状腺素、促甲状腺素的比较[J];青海畜牧兽医杂志;2015年06期
3 李玮;刘蕤;马尧;李金龙;吴宏军;刘爱荣;俞英;徐青;王雅春;;重度冷应激对三河牛血液生化指标及相关基因表达的影响[J];畜牧兽医学报;2015年08期
4 白琳;栾冬梅;;冷应激对奶牛生理机能和生产性能的影响[J];黑龙江畜牧兽医;2015年14期
5 孙秋岩;单忠艳;滕卫平;姜雅秋;;应激对下丘脑—垂体—甲状腺轴影响的研究进展[J];山东医药;2015年17期
6 杨莉;张莉;齐亚银;沈文;李岩;张鲁安;;冷应激对湖羊血清因子及热休克蛋白70 mRNA表达的影响[J];中国畜牧兽医;2015年04期
7 徐明;吴淑云;黄常宝;石小平;;呼和浩特地区牛舍内温湿度变化规律和奶牛冷热应激判定[J];家畜生态学报;2015年02期
8 魏丽;;通过体温、脉搏率和呼吸频率的检查诊断牛病[J];养殖技术顾问;2014年11期
9 周晓莉;饶一武;;应激状态下患者下丘脑-垂体-肾上腺轴功能的变化[J];医学综述;2014年13期
10 郭时金;张志美;付石军;张颖;徐倩倩;王艳萍;沈志强;;奶牛热应激的危害及控制[J];家畜生态学报;2013年03期
相关博士学位论文 前2条
1 刘延鑫;奶牛耐热性状候选基因的遗传特性分析[D];南京农业大学;2010年
2 吴永魁;仔猪冷应激反应中激素、HSP70及其mRNA的动态分析[D];吉林大学;2006年
相关硕士学位论文 前10条
1 张名亮;双翅目昆虫侵袭应激对牛行为学反应及其对神经内分泌系统的影响[D];内蒙古农业大学;2014年
2 春花;近30年内蒙古气候变化趋势及其对草原区植被覆盖变化的影响[D];内蒙古师范大学;2014年
3 蔡明成;热应激对肉牛生理生化指标及外周血microRNA表达水平的影响[D];西南大学;2014年
4 唐丽;热应激对肉种母鸡繁殖性能、相关生理生化和分子指标的影响[D];中国农业科学院;2013年
5 李芳;荷斯坦奶牛HSF1基因多态性与耐热性能的相关分析[D];吉林大学;2009年
6 王玮;冷应激对家猪、野猪HSP70、GR mRNA表达的影响[D];吉林大学;2007年
7 井霞;慢性冷热应激对荷斯坦奶牛维持行为及免疫功能的影响研究[D];内蒙古农业大学;2006年
8 吕晓伟;慢性冷热应激对荷斯坦奶牛血清酶活力、内分泌激素水平及维持行为的影响[D];内蒙古农业大学;2006年
9 安代志;高温环境的评定及其高产奶牛体温调节特性[D];南京农业大学;2005年
10 龚远英;肉鸡急性热应激损伤与应激损伤机理的研究[D];南京农业大学;2001年
,本文编号:1722298
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/1722298.html