当前位置:主页 > 科技论文 > 基因论文 >

ABA受体与紫花苜蓿逆境相关基因表达分析研究

发布时间:2018-05-11 11:41

  本文选题:ABA受体 + 紫花苜蓿 ; 参考:《西北农林科技大学》2017年硕士论文


【摘要】:本文以紫花苜蓿不同品种(三得利、赛迪5、新牧2、WL903、WL712、WL656、WL343、WL168)为试验材料,研究了逆境胁迫对紫花苜蓿ABA受体与逆境相关基因的表达的影响,对ABA受体基因进行了生物信息学分析,并对胁迫后ABA受体表达进行了分析,同时分析了喷施外源ABA后苜蓿生理和ABA受体及逆境基因的表达。这对逆境条件下紫花苜蓿抗性品种的选择提供了指导,也为今后苜蓿ABA受体在逆境中的应用及抗逆育种提供科学依据。1.利用生物信息学方法,对PYL不同基因的理化性质、蛋白结构等进行推测分析。结果显示:PYL 9个基因所编码的相应蛋白分子量都在20-25 kd范围,其酸碱性除Medtr5g083270外都为弱酸,都为疏水性蛋白,其中Medtr4g014460和Medtr5g03050属于疏水性稳定蛋白质,其它都是不稳定疏水性蛋白质,都不含信号肽;除Medtr5g03050和Medtr1g016480无糖基化位点外,其它基因糖基化位点数有所不同,都没有跨膜结构域。PYL多肽链二级结构主要有α-螺旋、无规则卷曲和延伸链构成,PYL三级结构中Medtr3g071740、Medtr5g083270和Medtr4g014460及Medtr8g027805和Medtr3g090980蛋白保守结构域的三级结构模型基本一致,其它蛋白三级结构各有不同。分子系统进化关系显示,Medtr1g028380、Medtr3g090980同源关系较近,这二者又与Medtr8g027805同源关系较近。Medtr3g071740、Medtr5g083270同源关系较近,这二者又与Medtr4g014460、Medtr7g070050同源关系较近。Medtr1g016480、Medtr5g030500同源关系较近。对PYL保守结构域分析,其编码的蛋白质均含有putative hydrophobic ligand binding site、protein interface和gate结构,以及PYL特异性位点的多重结构域。其基因理化性质,蛋白结构的相似性表明它们在调节机体某些方面共同发挥协调作用,通过某种特定的方式参与机体功能的实现。2.利用15%PEG-6000模拟渗透胁迫,4%NaCl模拟盐胁迫,4℃模拟低温胁迫,采用RT-PCR方法对蒺藜苜蓿和不同品种紫花苜蓿ABA受体的表达进行分析。结果如下:15%PEG胁迫下,蒺藜苜蓿中Medtr1g016480和Medtr5g083270的表达量与CK相比显著升高,分别提高了678.3%、99.6%、231.3%和611.4%、47.6%、176.7%(P0.05),其它基因变化不显著,紫花苜蓿中WL168的表达量最高,其Medtr1g016480和Medtr5g083270在根茎叶中的表达都为根叶茎(6.10、3.04、1.79和6.51、1.89、1.67)。4%NaCl胁迫下,蒺藜苜蓿Medtr1g016480和Medtr5g083270的表达量与CK相比显著升高,分别提高了781.3%、45.9%、269.8%和558.5%、11.2%、53.6%(P0.05),紫花苜蓿中WL168的表达量最高,其Medtr1g016480和Medtr5g083270在根茎叶中的表达都为根叶茎(6.13、3.01、1.98和5.91、2.63、1.51)。4℃低温胁迫下,蒺藜苜蓿中Medtr1g016480和Medtr5g083270的表达量与CK相比显著升高,分别提高了103.5%、14.3%、474.6%和113.8%、56.6%、557.7%(P0.05),苜蓿品种中WL168基因相对表达量最高,其Medtr1g016480和Medtr5g083270在根茎叶中的表达都为叶根茎(6.12、3.09、1.99和5.23、2.78、1.76)。表明ABA受体表达的主要部位在根和叶中,苜蓿ABA受体Medtr1g016480和Medtr5g083270在ABA调控系统中起重要作用,促进苜蓿抵抗逆境的能力。3.采用50μM的外源ABA喷施正常生长的苜蓿幼苗,连续喷施5天。待处理组叶面发黄,测定处理组与对照组的叶绿素含量和脯氨酸含量,采用RT-PCR方法测其ABA受体表达和逆境基因ORE1、RD29A、SAG12和SAG13的表达水平。结果表明:外源ABA处理下,WL168的叶绿素含量最高,三得利的叶绿素含量最低,TM叶绿素含量显著低于CK,WL168的叶绿素含量下降了37.18%(P0.05);WL168的脯氨酸含量最高,三得利脯氨酸含量最低,TM脯氨酸含量显著高于CK,WL168脯氨酸含量上升了84.0%(P0.05)。外源ABA处理下,苜蓿ABA受体的表达量都显著升高,其中Medtr1g016480、Medtr3g071740、Medtr5g030500、Medtr5g083270和Medtr7g070050的表达量显著高于其它基因。苜蓿品种中WL168基因相对表达量最高,三得利相对表达量最小。逆境相关基因ORE1、RD29A、SAG12和SAG13的相对表达量与CK相比显著提高,各基因表达量由高到低为RD29AORE1SAG13SAG12。其中,表达量最大是WL168,分别提高了431.2%、503.8%、343.6%和405.9%(P0.05);相对表达量最小是三得利,分别提高了282.9%、359.2%、230.8%和261.9%(P0.05);苜蓿可能通过RD29A基因的表达来驱动其它逆境基因使其激活,进而调节植物体完成对逆境胁迫的抵抗。
[Abstract]:In this paper, the effects of adversity stress on the expression of ABA receptor and adversity related genes in alfalfa were studied with different alfalfa varieties (San De Li, sadi 5, new pastoral 2, WL903, WL712, WL656, WL343, WL168). The bioinformatics analysis of the ABA receptor gene was carried out, and the expression of ABA receptor after stress was analyzed, and the analysis of the expression of ABA receptor was also analyzed. The expression of Alfalfa physiology, ABA receptor and adversity gene after spraying exogenous ABA, which provides guidance for the selection of resistant varieties of Alfalfa under adverse conditions, and provides scientific basis for the application of Alfalfa ABA receptor in adversity and resistance breeding,.1. using bioinformatics method, the physicochemical properties and protein structure of different PYL genes. The results show that the molecular weight of the corresponding protein encoded by the 9 genes of PYL is in the range of 20-25 KD, and its acid base is weak acid except Medtr5g083270, and all of them are hydrophobic proteins. Among them, Medtr4g014460 and Medtr5g03050 are hydrophobic and stable proteins, and the others are unstable hydrophobic proteins, neither contain signal peptides; except Med. The number of glycosylation sites of other genes is different from the tr5g03050 and Medtr1g016480 glycosylation sites. There is no two stage structure of.PYL polypeptide chain in the transmembrane domain, including alpha helix, irregular curling and extension chain, and Medtr3g071740, Medtr5g083270 and Medtr4g014460, Medtr8g027805 and Medtr3g090980 protein conserved in PYL three structure. The three level structure model of the structure is basically the same, and the other protein three structure is different. The molecular phylogenetic relationship shows that Medtr1g028380 and Medtr3g090980 have close homology, and these two are close to.Medtr3g071740, Medtr5g083270 homology is closer, and these two are homologous with Medtr4g014460 and Medtr7g070050. The relationship is closer to.Medtr1g016480, and the homology of Medtr5g030500 is close. For the analysis of PYL conservative domain, the encoded proteins contain putative hydrophobic ligand binding site, protein interface and gate structures, and the multiple domains of PYL specific sites. Their genetic properties and the similarity of protein structure indicate that they are in regulation. Some aspects of the body play a coordinated role and participate in the function of the body in a certain way..2. uses 15%PEG-6000 to simulate osmotic stress, 4%NaCl simulates salt stress, 4 degrees centigrade simulated low temperature stress, and RT-PCR method is used to analyze the expression of ABA in alfalfa and alfalfa varieties of different varieties of Tribulus terrestris and different varieties. The results are as follows: 15%PEG stress The expression of Medtr1g016480 and Medtr5g083270 in alfalfa was significantly higher than that of CK, and increased by 678.3%, 99.6%, 231.3% and 611.4%, 47.6%, 176.7% (P0.05), and the other gene changes were not significant. The expression of WL168 in alfalfa was the highest, and the expression of Medtr1g016480 and Medtr5g083270 in the rhizome leaves was the root leaf stem (6.10,3.04,1.). 79 and 6.51,1.89,1.67) under.4%NaCl stress, the expression of Medtr1g016480 and Medtr5g083270 in alfalfa increased significantly compared with CK, and increased by 781.3%, 45.9%, 269.8% and 558.5%, 11.2%, 53.6% (P0.05). The expression of WL168 in alfalfa was the highest, and the expression of Medtr1g016480 and Medtr5g083270 in the rhizome leaves was the root and leaf stem (6.13,3.01,1). .98 and 5.91,2.63,1.51) at.4 C under low temperature stress, the expression of Medtr1g016480 and Medtr5g083270 in alfalfa was significantly higher than that of CK, and increased by 103.5%, 14.3%, 474.6% and 113.8%, 56.6%, 557.7% (P0.05). The relative expression of WL168 gene in alfalfa varieties was the highest, and the expression of Medtr1g016480 and Medtr5g083270 in the rhizome leaves were all leaves. The rhizomes (6.12,3.09,1.99 and 5.23,2.78,1.76) showed that the main sites of ABA receptor expression were in the roots and leaves. Alfalfa ABA receptor Medtr1g016480 and Medtr5g083270 played an important role in the ABA regulation system. The ability to promote alfalfa resistance to adversity,.3. used 50 u M exogenous ABA to spray the normal growth alfalfa seedlings for 5 days. The chlorophyll content and proline content of the treatment group and the control group were measured, and the expression of ABA receptor and adversity gene ORE1, RD29A, SAG12 and SAG13 were measured by RT-PCR method. The results showed that the chlorophyll content of WL168 was the highest, the content of the chlorophyll was the lowest, and the content of TM chlorophyll was significantly lower than CK and WL1. The content of chlorophyll in 68 decreased by 37.18% (P0.05); the content of proline in WL168 was the highest, the content of proline was the lowest, the proline content of TM was significantly higher than that of CK, and the content of WL168 proline increased by 84% (P0.05). The expression of Alfalfa ABA receptor was significantly increased under exogenous ABA treatment, including Medtr1g016480, Medtr3g071740, Medtr5g030500, Medtr5g0832. The expression of 70 and Medtr7g070050 is significantly higher than that of other genes. The relative expression of WL168 gene in alfalfa varieties is the highest, and the relative expression of the three delta is the smallest. The relative expression of the adversity related genes ORE1, RD29A, SAG12 and SAG13 is significantly higher than that of CK, and the expression of each gene is from high to low to RD29AORE1SAG13SAG12., and the maximum expression is WL1 68, 431.2%, 503.8%, 343.6% and 405.9% (P0.05) were increased respectively, and the minimum relative expression was three gain, which increased by 282.9%, 359.2%, 230.8% and 261.9% (P0.05). Alfalfa could activate other adversity genes through the expression of RD29A gene, and then adjust the plant to resist the stress of adversity.

【学位授予单位】:西北农林科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S541.9

【相似文献】

相关期刊论文 前10条

1 李智念,王光明,曾之文;水稻等作物抗寒中ABA的相关研究[J];耕作与栽培;2003年03期

2 李智念,王光明,曾之文;植物干旱胁迫中的ABA研究[J];干旱地区农业研究;2003年02期

3 陈瑞;王丽蓉;陆漓;张振先;张德颐;;水稻幼叶中与ABA亲和力强的结合蛋白[J];Journal of Integrative Plant Biology;1992年03期

4 赵春章;刘庆;姚晓芹;汪明;龚良春;;长期喷施ABA对云杉幼苗生长和生理特性的影响[J];植物学通报;2008年03期

5 刘仁梅;杨淑彬;;小麦内源ABA研究进展[J];现代农业科技;2010年15期

6 李巍;萧浪涛;;一种新型电流型免疫传感器的ABA最优测定条件研究[J];生物技术通报;2008年03期

7 邵玺文,孙长占,阮长春,韩立军,赵兰坡,胡耀辉;ABA浸种对水稻生长及产量的影响[J];吉林农业大学学报;2003年03期

8 董永华,史吉平,李广敏,韩建民,商振清;外施6-BA和ABA提高玉米幼苗抗旱能力的作用及效果[J];西北植物学报;1998年02期

9 汤日圣,张大栋,童红玉;高温胁迫对稻苗某些生理指标的影响及ABA和6-BA对其的调节[J];江苏农业学报;2005年03期

10 刘子会;张红梅;郭秀林;;ABA诱导的玉米保卫细胞胞质钙离子浓度的变化[J];中国农业科学;2008年10期

相关会议论文 前10条

1 刘春玲;彭新湘;郭振飞;;水稻对几种逆境的抗性与ABA的关系[A];中国青年农业科学学术年报[C];2002年

2 赵志光;陈国仓;张承烈;;活性氧和一氧化氮参与干旱胁迫诱导的小麦根尖ABA合成[A];西部地区第二届植物科学与开发学术讨论会论文摘要集[C];2001年

3 汤日圣;张大栋;童红玉;;高温胁迫伤害水稻秧苗及6-BA、ABA的调节作用[A];中国植物生理学会第九次全国会议论文摘要汇编[C];2004年

4 张蓉平;左彪;高杰;张丽;王新平;;分子水平研究AB及ABA型氟化嵌段共聚物甲苯溶液气液界面结构[A];中国化学会第十三届胶体与界面化学会议论文摘要集[C];2011年

5 郭振飞;刘娥娥;卢少云;陈慧萍;刘春玲;;水稻对几种逆境的多重耐性—与ABA的关系[A];中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编[C];2003年

6 蒋明义;;ABA诱导作物细胞抗氧化防护的信号转导研究[A];中国植物生理学会第十次会员代表大会暨全国学术年会论文摘要汇编[C];2009年

7 张晓枫;姜涛;王小芳;张大鹏;;ABA信号转导:ADR2拮抗ABAR-WRKY40信号通路[A];2011全国植物生物学研讨会论文集[C];2011年

8 王勇;陆旺金;张昭其;;ABA在果实采后领域的研究进展[A];中国园艺学会第五届青年学术讨论会论文集[C];2002年

9 陈其军;安瑞;秦治翔;陈珈;王学臣;;通过同时激活依赖于ABA和不依赖于ABA的逆境胁迫信号转导途径改善拟南芥和烟草的抗逆性[A];2004中国植物生理生态学学术研讨会论文摘要汇编[C];2004年

10 于晶;王兴;苍晶;;外源ABA、GA及6-BA对冬小麦抗寒性的影响[A];中国植物生理学会第十次会员代表大会暨全国学术年会论文摘要汇编[C];2009年

相关博士学位论文 前10条

1 孙永华;玉米ABA受体基因的选择性剪接及其在抗旱性方面的功能研究[D];中国农业科学院;2014年

2 吕天晓;拟南芥MAX2蛋白介导ABA信号及抗旱反应的分子机制[D];中国科学院研究生院(东北地理与农业生态研究所);2015年

3 王晓苹;小ERF转录因子参与调控拟南芥对ABA和盐胁迫的响应[D];东北师范大学;2016年

4 刚爽;ABA对亚高温强光胁迫下番茄叶片光合作用影响及分子机制研究[D];沈阳农业大学;2016年

5 朱银华;拟南芥类受体激酶FLS2调控ABA和Flg22诱导气孔关闭的机制研究[D];中国农业大学;2017年

6 田晓杰;水稻ABA受体OsPYLs基因家族的鉴定和功能研究[D];中国科学院大学(中国科学院东北地理与农业生态研究所);2017年

7 张浩;ABA敏感性对拟南芥群体异速生长指数和个体相互作用的调控研究[D];浙江大学;2006年

8 王金香;ABA诱导的玉米(Zea mays L.)MAPK基因克隆、表达分析、定位及功能研究[D];南京农业大学;2009年

9 吕东;ATHK1参与ABA诱导气孔关闭的信号转导过程[D];河南大学;2012年

10 张艳艳;植物磷酶D、一氧化氮和过氧化氢在转导ABA、盐胁迫信号中的关系[D];南京农业大学;2007年

相关硕士学位论文 前10条

1 尹梅;油菜Bna.TTG2基因在ABA介导的种子萌发中的作用[D];华中农业大学;2015年

2 朱兰芳;ABA对水稻不同发育阶段光合作用调控及其机理分析[D];福建农林大学;2012年

3 郭贵华;长江下游水稻品种耐旱性比较及对外源ABA响应[D];南京农业大学;2014年

4 王东岭;ABA代谢关键基因调控桃休眠的分子机制研究[D];山东农业大学;2016年

5 顾建伟;光敏色素B介导的光信号调控水稻ABA反应的研究[D];郑州大学;2012年

6 邹兴建;干旱胁迫下不同倍性水稻的生理差异及ABA相关基因表达比较[D];四川农业大学;2010年

7 韩璐;OsABA8ox2-RNAi转基因水稻鉴定及ABA相关基因表达分析[D];哈尔滨师范大学;2014年

8 齐光;黑龙江省主栽水稻品种苗期耐冷鉴定及ABA对苗期耐冷的调节作用[D];东北农业大学;2008年

9 刘子会;干旱胁迫下玉米ABA和pH与钙信使的关系研究[D];河北师范大学;2004年

10 王英哲;低温胁迫下紫花苜蓿对外源SA和ABA的生理响应[D];吉林农业大学;2012年



本文编号:1873803

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/1873803.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1e927***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com