当前位置:主页 > 科技论文 > 基因论文 >

山核桃油脂合成基因家族分析及候选基因功能验证

发布时间:2018-05-21 20:17

  本文选题:山核桃 + 油脂合成 ; 参考:《浙江农林大学》2017年硕士论文


【摘要】:山核桃(Carya cathayensis Sarg.)是我国特有的特色优质干果,具有极高的营养价值,富含优质脂肪酸和多种微量元素,是高油酸木本油料作物。在成油方面,通过对山核桃果实发育阶段粗脂肪含量和脂肪酸组分的测定,结合山核桃果实发育阶段的转录组数据,分析油脂的来源、合成及降解,构建了山核桃成油网络,揭示了山核桃油脂积累过程中的基因表达规律。本研究运用实验和生物信息学的研究手段对山核桃油脂合成过程中的脂肪酸去饱和酶基因家族做了全面分析,以期揭示山核桃高不饱和脂肪酸油脂组分机理,此外,通过转基因手段验证油脂合成候选基因功能,以期从分子水平解释山核桃高油机制,筛选出提高含油率和特定脂肪酸含量的关键基因,为选育获得高油和高品质的山核桃品种提供理论依据。主要结果如下:1、山核桃油主要由棕榈酸(C16:0)、硬脂酸(C18:0)、油酸(C18:1)、亚油酸(C18:2)以及亚麻酸(C18:3)五种组分组成,成熟阶段的山核桃不饱和脂肪酸含量为92.45%,山核桃是高油酸植物,成熟阶段的油酸占总不饱和脂肪酸的比例可达85.57%,此外亚油酸和亚麻酸含量也较为丰富,ω-6型脂肪酸/ω-3型脂肪酸比值为1.69:1,是多不饱和脂肪酸含量的最佳比值,有很高的营养价值。2、扩增得到山核桃SAD家族成员3个,分别是:CcSAD-1;CcSAD-2,CcSAD-3,都含有典型的Ferritin-like superfamily功能结构域,含有1个保守基序(DLLNKYLY),同时,定量结果表明SAD基因表达在山核桃果实成熟过程中存在差异,随着CcSADs基因表达上升,山核桃油中油酸含量增加。3、扩增得到山核桃FAD家族成员9个,分别是:CcFAD2;CcFAD3,3个拷贝,记为CcFAD3-1、CcFAD3-2、CcFAD3-3;CcFAD6;CcFAD7;CcFAD8,3个拷贝,记为CcFAD8-1、CcFAD8-2、CcFAD8-3,都含有典型的Membrance-FADS-like super family功能结构域,含有2个保守的组氨酸基序(Hisbox),同时,定量结果表明FAD基因表达在山核桃果实成熟过程中存在差异,随着CcFADs基因表达上升,山核桃油中不饱和脂肪酸比例增加。4、构建3个油脂合成候选基因转基因体系:35Spro-Uni11、35Spro-Uni72、35SproUni58,35Spro-Uni11转基因拟南芥表型较野生型叶型小、叶片数多、抽薹率高、侧枝多,但种子油含量未明显增加;35Spro-Uni72和35Spro-Uni58转基因拟南芥T1代表型较野生型拟南芥侧枝多,株型更饱满,但是从T2代转基因拟南芥中未再检测到相应基因,猜测原因是拟南芥的自我保护机制,切除了异源基因。
[Abstract]:Carya cathayensis Sarg.) It is a unique high quality dried fruit with high nutritional value, rich in high quality fatty acids and trace elements, and is a high oleic acid woody oil crop. In the aspect of oil formation, the crude fat content and fatty acid composition of pecan fruit were determined, and the source, synthesis and degradation of oil were analyzed according to the transcriptional data of pecan fruit development stage, and the oil forming network of pecan was constructed. The rule of gene expression during the accumulation of pecan oil was revealed. In this study, the fatty acid desaturase gene family in the synthesis of pecan oil was analyzed by means of experiments and bioinformatics, in order to reveal the mechanism of the fatty acid desaturase gene in pecan oil synthesis. In order to explain the mechanism of high oil content in pecans at molecular level and to screen out the key genes to increase oil content and specific fatty acid content, the function of candidate genes for oil synthesis was verified by transgenic methods. To provide theoretical basis for breeding high oil and high quality pecan varieties. The main results are as follows: the pecan oil is composed mainly of five components: palmitic acid C16: 0, stearic acid C18: 0, oleic acid C18: 1, linoleic acid C18: 2) and linolenic acid (C18: 3). The unsaturated fatty acid content of pecan is 92.455.The pecan is a high oleic acid plant. The ratio of oleic acid to total unsaturated fatty acid in mature stage is 85.57, and the content of linoleic acid and linolenic acid is also relatively rich. The ratio of 蠅 -6 fatty acid to 蠅 -3 fatty acid is 1.69: 1, which is the best ratio of polyunsaturated fatty acid content. There are three members of the pecan SAD family, namely: CcSAD-1, CcSAD-2CcSAD-3, which contain a typical functional domain of Ferritin-like superfamily, a conserved motif DLLNKYYYY, and a conserved motif DLNKYLYYY. The quantitative results showed that there were differences in the expression of SAD gene during fruit ripening. With the increase of CcSADs gene expression, oleic acid content in pecan oil increased by .3.Nine members of the FAD family of pecan were obtained by amplification, which were respectively: 1 / CcFAD2CcFAD3, 3 copies. CcFAD3-1, CcFAD3-2, CcFAD3-3, CcFAD6, CcFAD7, CcFAD8, and CcFAD8-2, CcFAD8-3, all contained typical Membrance-FADS-like super family functional domains and two conserved histidine sequence Hisboxbox. The quantitative results showed that the expression of FAD gene was different in the ripening process of pecan fruit. With the increase of CcFADs gene expression, the proportion of unsaturated fatty acids in pecan oil increased .4.The transgenic Arabidopsis thaliana transgenic with three candidate genes for oil synthesis was constructed, the phenotype of Arabidopsis thaliana was smaller than that of wild type leaves, the number of leaves was more, the bolting rate was higher, and the lateral branches were more than those of wild type Arabidopsis thaliana. However, the seed oil content was not significantly increased in transgenic Arabidopsis thaliana and 35Spro-Uni58 transgenic Arabidopsis thaliana, the T1 representative type was more than that of wild type Arabidopsis thaliana, but the corresponding gene was not detected from T2 generation transgenic Arabidopsis thaliana. The hypothetical reason is the self-protection mechanism of Arabidopsis thaliana and the excision of allogenic genes.
【学位授予单位】:浙江农林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S664.1

【参考文献】

相关期刊论文 前10条

1 牛蓓;徐莺;宋君;郭晓恒;符佳;邹亮;陈放;高孝锦;郭静;;乌桕硬脂酰-酰基载体蛋白脱饱和酶基因的克隆及表达[J];西南农业学报;2016年08期

2 石磊;苗利娟;齐飞艳;张忠信;高伟;孙子淇;黄冰艳;董文召;汤丰收;张新友;;花生Δ~9-硬脂酰-ACP脱氢酶基因启动子的克隆及功能分析[J];作物学报;2016年11期

3 李培江;米瑶;余竟;李碧娟;廖芳;李关荣;;美国引进向日葵种子含油量和脂肪酸组成比较分析[J];中国油脂;2015年11期

4 刘新亮;蔡金峰;王欢利;曹福亮;;银杏GbSAD基因对非生物胁迫的响应及原核表达[J];东北林业大学学报;2015年12期

5 梁珊珊;吕芳德;蒋;瑶;李建安;王森;蒋淑芳;李凡松;;美国山核桃坚果主成分分析及综合评价[J];中国南方果树;2015年03期

6 化文平;;葡萄等植物DFR基因家族生物信息学分析[J];陕西农业科学;2013年06期

7 金晟;郑昌吉;郑明昱;;山核桃油对四氯化碳诱导的大鼠急性肝损伤的影响[J];延边大学医学学报;2013年03期

8 李永华;史春会;李永;杨秋生;;低温下4种秋菊叶片和根系膜脂脂肪酸组分比较[J];植物生理学报;2013年05期

9 李国明;刘凌;龚树立;侯占群;胡瑞连;李晨悦;;功能性植物油脂的主要生理活性及应用[J];中国食品添加剂;2013年02期

10 杨春英;刘学铭;陈智毅;;15种食用植物油脂肪酸的气相色谱-质谱分析[J];食品科学;2013年06期

相关硕士学位论文 前2条

1 郑德松;油脂合成过程中甘油三磷酸脱氢酶基因及乙酰辅酶A羧化酶基因的克隆与鉴定[D];山东农业大学;2012年

2 郭金剑;山核桃群体结构及多样性的研究[D];浙江林学院;2008年



本文编号:1920643

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/1920643.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b9092***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com