木薯气孔调节相关基因的表达分析及其与耐旱性的关系
[Abstract]:Cassava (Manihot esculenta Crantz) is an important tropical root crop with the characteristics of high light efficiency drought resistance and poor tolerance. It is the main food crop in arid and arid areas of the tropics and subtropics. Stomata are important structures regulating the exchange of gas and water between plants and the outside world, and they are one of the main factors affecting plant drought tolerance. In order to study the relationship between stomatal density, stomatal regulation and cassava drought resistance. The stomatal density of 92 cassava cultivars was statistically analyzed under drought stress, and 6 cultivars with typical stomatal density were selected for further determination of physiological and biochemical indexes. In order to explore the correlation between photosynthetic efficiency, drought tolerance and stomatal density of cassava. At the same time, we found that the stomatal density of MeMYB2-RNAi transgenic cassava was significantly higher than that of non-transgenic plants, and its photosynthetic rate was significantly higher than that of non-transgenic plants. The results in several cultivars and MeMYB2-RNAi transgenic cassava showed that there was no correlation between stomatal density and drought resistance of cassava. We speculate that cassava may reduce its water loss by closing the stomata quickly in order to avoid drought. The regulation mechanism of high stomatal density and rapid stomatal closure can not only meet the needs of cassava as a tropical crop with high light efficiency, but also ensure its drought tolerance. Plant plants under drought stress will produce hormone abscisic acid (ABA), and thus promote the production of reactive oxygen (ROS), thus closing stomata, in order to reduce leaf water evaporation, protect plants through the drought period. However, a large amount of ROS produced in this process can destroy the redox balance in cells and cause damage to plant. Glutathione / glutathione system is an important protein redox system in plants. By regulating the redox state of proteins, the glutendoxin (CC-type Glutaredoxins) is a unique class of glutenin in higher plants, which is involved in the ROS signal transduction pathway of plants. It can effectively protect plant cells from oxidative damage under oxidative stress. In this study, the differential expression of multiple CC-type GRX genes in cassava was analyzed. It was found that the expression of multiple CC-type GRX genes in cassava leaves was induced by drought stress. Our team has done some research on cassava CC-type GRX involved in the regulation of stomata by ABA. It was found that the ability of CC-type GRX to induce stomatal closure was significantly weakened in transgenic Arabidopsis thaliana with overexpression of MeGRX232. The reduced tolerance of transgenic Arabidopsis thaliana to drought stress. CC glutendoxin can interact with TGA transcription factors to regulate the expression of a series of genes downstream. In order to further explore the interaction protein of CC-type GRX in cassava, we screened out the TGA factor which could interact with CC glutenin (MeGRX058) and MeGRX785 in cassava by yeast double cross experiment. The results showed that MeGRX058 and MeTGA304 could interact with each other. In order to further verify its interaction with TGA transcription factors, we selected two genes, brother MeGRX058 and MeGRX785, for further protein expression analysis in vitro, in order to lay a foundation for the further study of GRX function in cassava. We use different label proteins to label MeGRX058 and MeGRX785, and express these two recombinant proteins in yeast and transgenic plants, respectively. The results showed that the two recombinant proteins could be expressed in yeast and transgenic plants, but the expressed products were degraded in large quantities. We speculated that the MeGRX058 and MeGRX785 proteins were degraded by ubiquitin in vivo.
【学位授予单位】:海南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S533
【相似文献】
相关期刊论文 前10条
1 肖文渊,陶正纲;饲用木薯干的质量控制[J];饲料与畜牧;2005年04期
2 罗挺生;何普松;;木薯拭种成功的几点经验[J];浙江农业科学;1961年03期
3 R.Charez;林野;;离体栽培以保存木薯属野生种的潜力[J];热带作物译丛;1989年06期
4 杨美琼 ,李明丽;木薯栽培技术[J];云南农业;2002年10期
5 曾霞,庄南生;木薯分子标记研究进展[J];华南热带农业大学学报;2003年01期
6 杨双权,刘中邦,刘春才,秦兴海;木薯高产实用栽培技术[J];云南农业科技;2004年06期
7 姚庆荣;郭运玲;郭安平;郭建春;李开绵;贺立卡;;木薯基因工程育种研究现状与展望[J];安徽农业科学;2007年06期
8 付瑜华;李杰;王海燕;杨子贤;王文泉;;木薯商业品种的指纹图谱构建[J];植物遗传资源学报;2007年01期
9 张振文;李开绵;叶剑秋;许瑞丽;;木薯光合作用特性研究[J];云南大学学报(自然科学版);2007年06期
10 班美玲;周生茂;韦本辉;林卫东;李宝会;;广西能源木薯可持续发展的优势、问题和对策[J];安徽农业科学;2007年33期
相关会议论文 前3条
1 林洪鑫;袁展汽;刘仁根;肖运萍;汪瑞清;;灰色系统理论在江西木薯引种评价上的应用[A];2012年中国作物学会学术年会论文摘要集[C];2012年
2 蒋汇川;韦鹏练;李宁;罗建举;;木薯粗根纤维形态、组织比量及化学成分的研究[A];第二届中国林业学术大会——S11 木材及生物质资源高效增值利用与木材安全论文集[C];2009年
3 周凤珏;许鸿源;白坤栋;施力军;;PP333对木薯生长、光合和蒸腾的影响[A];2003年广西植物生理学年会论文汇编[C];2003年
相关重要报纸文章 前1条
1 宋晓珍邋彭建军;“汽车燃料”田里种 万坪农民忙增收[N];团结报;2007年
相关博士学位论文 前10条
1 姚远;木薯转化酶基因家族克隆、结构进化及表达分析[D];海南大学;2013年
2 徐兵强;不同光照条件下木薯叶绿体蛋白质组学研究[D];海南大学;2014年
3 张杨;木薯光合生理、结构及相关基因表达特征的初步研究[D];海南大学;2012年
4 左应梅;木薯光合特性的生理生态研究[D];海南大学;2010年
5 周芳;干旱与低温胁迫下木薯基因表达谱分析及鉴定[D];海南大学;2013年
6 韦茂贵;木薯茎秆作为生物质能原料的化学特性研究[D];中国农业大学;2014年
7 赖杭桂;木薯2n配子途径诱导多倍体的研究[D];海南大学;2014年
8 赵超;抗旱胁迫下木薯茎杆中糖类物质的代谢变化[D];海南大学;2013年
9 潘坤;同化物在木薯块根韧皮部卸载的细胞学路径[D];海南大学;2012年
10 闵义;木薯块根淀粉形态发生与积累的酶活性动态初步研究[D];海南大学;2010年
相关硕士学位论文 前10条
1 莫桂楷;南宁市木薯产业化发展问题研究[D];华中农业大学;2008年
2 尹秀华;木薯生长特性及贮藏对其品质影响的研究[D];广西大学;2011年
3 裴金利;木薯MePho和MeSBE基因家族及其在多种环境下表达模式分析[D];海南大学;2015年
4 吕瑞杰;中国、泰国、越南、印尼四国木薯贸易竞争力及产业化发展实证研究[D];暨南大学;2016年
5 周慧文;木薯四倍体离体诱导与诱变材料评价研究[D];广西大学;2016年
6 邓德力;木薯抗旱相关MemiR-162a及其靶基因的分析[D];海南大学;2015年
7 范洁;木薯肌醇半乳糖苷合成酶基因MeGolS5的抗旱功能研究[D];海南大学;2015年
8 陈实;基于ANSYS的木薯茎秆有限元建模及其静力学仿真分析[D];海南大学;2015年
9 刘畅;基于iTRAQ技术的木薯野生种和栽培种块根蛋白质组学研究[D];黑龙江八一农垦大学;2017年
10 吴炫柯;不同木薯品种生长发育及一些光合衰老生理特性的研究[D];广西大学;2005年
,本文编号:2176731
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2176731.html