基于基因表达谱的结直肠癌分子分型和预后评估
[Abstract]:Background and Objective Colorectal cancer is one of the most common malignant tumors in the world. The morbidity and mortality of colorectal cancer rank the third and fourth in malignant tumors respectively. Colorectal cancer is characterized by high heterogeneity in molecular formation mechanism and pathological morphology, which is a great challenge to the diagnosis, treatment and prognosis of colorectal cancer. The study of tumor gene expression profiles and the selection of characteristic information genes are the most direct means to explain the mechanism of tumorigenesis and development and to find therapeutic targets and prognostic markers. Differentially expressed genes were used to construct the differential diagnosis model of colorectal cancer; unsupervised clustering analysis and genetic analysis were combined to classify colorectal cancer, and the gene expression patterns of different types and their correlation with clinicopathological indexes were analyzed; prognostic index was used to evaluate the prognosis of colorectal cancer patients, and prognostic index was established. Methods 127 patients with colorectal cancer who were diagnosed and treated in a hospital from September 2006 to February 2012 were collected and their postoperative colorectal resection colorectal cancer were collected. Six pairs of colorectal cancer tissues and normal tissues were transcribed and sequenced, and the differentially expressed genes were selected. Seventy-seven genes larger than 10 were selected and validated by enlarged sample. Seventy-five genes with significant difference in expression and consistent direction and sequence were selected for follow-up study. The regression coefficients given by the case risk regression model were used to calculate the prognostic indices of each patient; Logistic regression model was used to analyze the multivariate analysis of binary observation outcome data; _2 test or Fisher's exact test was used to compare the composition ratio among groups; Wilcoxon rank sum test was used to compare and analyze the independent non-normal data; and R. OC curve analysis was used to evaluate the specificity and sensitivity of LASSO regression model and Logistic regression prediction model; ROC curve analysis was used to evaluate the value of prognostic index in survival assessment; unsupervised clustering was used to classify colorectal cancer tissues. The results of this study showed that 75 colorectal cancer tissues and normal groups were consistent with the results of RNA-seq. The overexpression of 13 genes was associated with the prognosis of colorectal cancer patients. The overexpression of CPNE8, LOC646627, CDKN2A, ATP6V1A, CA1, SCARA5, BEST4, SCNN1B, KLF9 was unfavorable to the prognosis of colorectal cancer patients. The overexpression of DNMT3B, ANLN, DNMT1, DNMT3A was beneficial to the prognosis of colorectal cancer patients. Five genes were independently associated with prognosis: high expression of DNMT3B was independently associated with prognosis, and high expression of LOC646627, SCARA5, CDKN2A, ATP6V1A was independently associated with prognosis. LASSO analysis was applied to multiple linear regression model to select 18 colorectal cancer characteristic genes (MLH1, PLOD3, TGM2, ATP6V1A, SQLE, MET, S100P, MT1M, BEST4, C). A7, LOC646627, ANPEP, P2RX1, FOXF2, GAB3, ABI3BP, SCARA5, ADAMDEC1 were used to construct a differential diagnosis model for colorectal cancer. The specificity, sensitivity and accuracy of the model were 96.85%, 98.43% and 97.6% respectively. Seventy-five differentially expressed genes, 13 prognostic-related genes and 5 prognosis-related genes were used in this study. Cluster analysis of 127 patients with colorectal cancer by independent related genes showed that 13 genes and 5 genes could be used to classify the patients into two groups with different prognosis. However, when adjusted for age, sex and TNM stage, the clustering results of 5 genes were still related to the prognosis of patients. DNMT3B was highly expressed in the first type, SCARA5 and LOC were high in the first type. 646627, CDKN2A was highly expressed in the second subtype, and the prognosis of the first subtype was better than that of the second subtype. PI-5 gene was superior to TNM staging in predicting 1 year, 3 years, and 5 years survival. The sub-curve scores of PI-5 gene and TNM staging were 0.719, 0.772 and 0.772, respectively. The prognostic index classification was added to the TNM prognostic prediction model. The actual survival prediction ability of the prognostic index classification was evaluated by the non-risk-based reclassification improvement index (cfNRI). It was found that the prognostic index classification could significantly improve the one-year, three-year, and five-year survival prediction ability of the model. The annual prognostic predictive ability (P 0.001) and cfNRI were 0.381, 0.507 and 0.465, respectively. Conclusion LASSO screening of colorectal cancer characteristic genes, and the construction of colorectal cancer differential diagnosis model, tumor tissue and normal tissue with high accuracy, and the specificity, sensitivity and accuracy of the model are higher than the traditional ones. Logistic regression model. Based on the differential gene expression profiles of colorectal cancer tissues and normal tissues, unsupervised clustering method can be used to classify colorectal cancer. The typing results have some explanatory power for the occurrence and development of colorectal cancer. The prognostic indices were more accurate than TNM staging, and the prognostic evaluation combined with TNM staging and prognostic index grading was more comprehensive and accurate.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R735.34
【相似文献】
相关期刊论文 前10条
1 王汉涛 ,Kraemer M.;随访危险因素分析:复发和非复发结直肠癌的比较[J];中国实用外科杂志;2001年12期
2 苏森;患结直肠癌妇女后代癌症的危险性增加[J];中国肿瘤;2001年06期
3 汪一虹;在确定的法国人群中年龄<45岁结直肠癌病人与≥45岁结直肠癌病人的比较[J];国外医学(消化系疾病分册);2002年01期
4 李会晨;结直肠癌解剖位置的连续性右向迁移[J];国外医学.外科学分册;2003年03期
5 李志霞;结直肠癌复发及转移的综合治疗[J];中华胃肠外科杂志;2003年06期
6 何建苗,蒲永东,曹志宇,刘卫平;老年人结直肠癌186例的外科治疗[J];中华胃肠外科杂志;2003年05期
7 保红平,方登华,高瑞岗,李奎,张雪松,刘天锡;青年人结直肠癌临床病理分析[J];中国普外基础与临床杂志;2004年01期
8 章江;;监测结直肠癌非常必要[J];国外医学情报;2004年04期
9 郜文秀,杨艳芳,梁小波,李耀平,李佩珍;细胞粘附分子变异体在结直肠癌中的表达及预后[J];中国公共卫生;2005年07期
10 Nozawa T. ,Enomoto T. ,Koshida Y. ,M. Kuranami,王志宇;人结直肠癌黏膜下血小板源性内皮细胞生长因子特异性增强表达[J];世界核心医学期刊文摘(胃肠病学分册);2005年06期
相关会议论文 前10条
1 郑树;;结直肠癌预后与转移相关因素分析[A];2005年浙江省肿瘤学术会议全国大肠癌转移与复发的诊治研讨会学术论文集[C];2005年
2 邹一峰;吴小剑;兰平;;结直肠癌免疫治疗新进展[A];第十一次全国中西医结合大肠肛门病学术会议论文汇编[C];2006年
3 郁宝铭;;结直肠癌治疗的进展及其新理念[A];2006年浙江省肛肠外科学术年会论文汇编[C];2006年
4 王锡山;;结直肠癌治疗的困惑之我见[A];第九届全国肿瘤转移学术大会暨2011年黑龙江省医学会肿瘤学年会报告集[C];2011年
5 秦建平;;未病思想中的结直肠癌预防[A];贵州省中西医结合学会肛肠学会第五届学术交流会暨新技术新进展学习班论文汇编[C];2012年
6 高文庆;陈会林;童蕾;陆松春;;老年梗阻性结直肠癌诊疗体会(附42例报告)[A];首届“之江中医药论坛”暨浙江省中医药学会2011年学术年会论文集[C];2011年
7 王启远;周长江;高云飞;徐岩;李坤;;血管内皮生长因子与结直肠癌[A];《中华急诊医学杂志》第八届组稿会暨急诊医学首届青年论坛论文汇编[C];2009年
8 巴一;;结直肠癌靶向治疗进展[A];第三届中国肿瘤内科大会教育集暨论文集[C];2009年
9 何超;朱洪波;;结直肠癌的生物治疗[A];2009年浙江省肿瘤外科学术年会暨肿瘤外科规范化诊治学习班论文汇编[C];2009年
10 万德森;;进一步提高结直肠癌疗效的思考[A];2009年浙江省肿瘤学术年会暨肿瘤诊治新进展学习班论文汇编[C];2009年
相关重要报纸文章 前10条
1 中华医学会肿瘤学分会主任委员 顾晋;分期不精确 致结直肠癌过度治疗[N];健康报;2012年
2 本报记者 贾岩;跨线治疗成结直肠癌最后防线[N];医药经济报;2012年
3 本报记者 贾岩;跨线治疗构筑结直肠癌最后防线[N];医药经济报;2012年
4 本报记者 林琳;结直肠癌:可以治愈的癌症[N];医药经济报;2013年
5 记者 张妍 通讯员 熊静帆 朱品磊;深圳结直肠癌发病高于全国[N];深圳商报;2013年
6 本报记者 孙刚;预防结直肠癌:请管住嘴[N];解放日报;2013年
7 上海市中医医院肿瘤科 侯凤刚 副主任医师;中医药在结直肠癌治疗中的作用和特色[N];上海中医药报;2014年
8 李华虹 孙瑜淼 记者 李丽云 实习生 阴浩;专家呼吁:结直肠癌应多学科规范化诊疗[N];科技日报;2014年
9 ;降低结直肠癌复发有新疗法[N];人民日报;2003年
10 韩自力;新化疗方案可高效治疗结直肠癌[N];健康报;2007年
相关博士学位论文 前10条
1 陈涛;MicroRNA-31/FIH-1调控关系在结直肠癌发生发展中的作用及其机制研究[D];复旦大学;2014年
2 任翡;MYBL2基因在结直肠癌的表达及机制的初步探讨[D];复旦大学;2014年
3 吴朋;结直肠癌中microRNA-615基因甲基化及其生物学特性探究[D];复旦大学;2014年
4 李泽武;MicroRNA-203靶向ZNF217基因调控结直肠癌生物学行为的研究[D];山东大学;2015年
5 徐兴远;低分子肝素对结直肠癌患者预后的影响及相关机制的研究[D];复旦大学;2014年
6 梁洪亮;miR-454在结直肠癌中的功能及其作用机制[D];山东大学;2015年
7 金鹏;MMR蛋白在雌激素致结肠癌细胞凋亡中的作用及SEPT9检测结直肠癌的研究[D];第三军医大学;2015年
8 珠珠;云南省Lynch综合征候选基因标志物研究[D];昆明医科大学;2014年
9 周智航;SEMA3F通过下调ASCL2-CXCR4轴而抑制结直肠癌转移的分子机制[D];第三军医大学;2015年
10 王林;MiRNA-300对结直肠癌肿瘤侵袭和增殖的影响及其调控机制的初步研究[D];第三军医大学;2015年
相关硕士学位论文 前10条
1 颜斐斐;术后结直肠癌患者癌因性疲乏与影响因素的研究[D];南方医科大学;2009年
2 李斌;结直肠癌患者就诊延迟分析[D];中南大学;2009年
3 叶建杰;慈溪市结直肠癌危险因素病例对照研究[D];浙江大学;2008年
4 赵波;结直肠癌危险因素及临床流行病学特征的调查与分析[D];广西医科大学;2013年
5 宋艳敏;PAQR3基因甲基化水平与结直肠癌关系的研究[D];河北大学;2015年
6 黎江;Oct4B1在结直肠癌干细胞中的表达及其与Twist的相关性研究[D];遵义医学院;2015年
7 杨文婷;PD-L1、SIRT1在结直肠癌组织中的表达及意义[D];福建医科大学;2015年
8 罗佳;二代测序分析散发性结直肠癌和息肉的基因突变[D];福建医科大学;2015年
9 崔慧鹏;精氨酸琥珀酸合成酶(ASS1)高表达与结直肠癌恶性进展的相关性研究[D];中国人民解放军医学院;2015年
10 崔娟娟;p53和nm23在结直肠癌中的表达及其临床意义[D];河北联合大学;2014年
,本文编号:2214523
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2214523.html