凡纳滨对虾不同家系氨氮代谢相关酶及相应基因应答氨氮胁迫的比较研究
[Abstract]:Litopenaeus vannamei, also known as Penaeus vannamei, has a strong adaptability to adversity, a faster growth rate and higher nutritional value. Since its introduction to China in 1988, after nearly 30 years of cultivation and development, Penaeus vannamei has become one of the three major shrimp breeds in China. As the most important environmental factor, ammonia nitrogen, which is harmful to shrimp healthy culture, can enter the tissue fluid of Penaeus vannamei through physiological metabolic pathway and cause blood ammonia. The sensitivity of Penaeus vannamei to ammonia-nitrogen stress was different at different developmental stages. In addition, the sensitivity of Penaeus vannamei to ammonia-nitrogen stress was also significantly different in different families with the same specifications. Therefore, the sensitivity of Penaeus vannamei to ammonia-nitrogen stress at different developmental stages was studied firstly, and then a comparative study was conducted between a family with poor environmental stress resistance (A3281, A) and a family with strong environmental stress resistance (B3271, B), with emphasis on the enzymes related to ammonia-nitrogen metabolism (glutamate). The activities of dehydrogenase (GDHase), glutamine synthase (GSase) and transglutaminase (TGase) and the temporal and spatial variations of their corresponding genes in response to ammonia-nitrogen stress lay a foundation for revealing the sensitivity of Penaeus vannamei to ammonia-nitrogen stress and its molecular mechanism, and provide scientific basis for breeding new strains resistant to ammonia-nitrogen. The results were as follows: 1. Phase II (Z2) of flea-like larvae was the most sensitive to ammonia-nitrogen stress in the early growth stage of Penaeus vannamei. The LC50 was 17.811 mg/L.2, and three enzymes related to ammonia-nitrogen metabolism responded to ammonia-nitrogen stress. (1) Comparative analysis of GDHase activity in different tissues of two families under different concentrations of ammonia-nitrogen stress (3.4-24.6 mg/L) significantly affected Fan. GDHase activity in shrimp tissues: GDHase activity in muscle of two families was significantly inhibited with the increase of ammonia concentration (p0.05); GDHase activity in liver and pancreas tissues of two families was induced with the increase of ammonia concentration in the first five days of stress, but it was significantly inhibited in the later period (5-10 days) of stress (p0.05). There was no significant difference in the activity of GDHase in tissues (p0.05). (2) The activity of GSase in muscle tissue of Penaeus vannamei from two families was induced with the increase of ammonia concentration, but there was significant difference in the activity of GSase in hepatopancreas between families. With the increase of ammonia nitrogen concentration, TGase activity of muscle and hepatopancreas was inhibited significantly in the early stage of ammonia nitrogen stress (T5 days). TGase activity decreased gradually with the increase of ammonia concentration; TGase activity showed significant family differences at the late stage of stress (T5 days). TGase activity in two tissues of family B was significantly inhibited with the increase of ammonia concentration, while that in family A was significantly induced (p0.05). Ammonia-nitrogen stress, the muscle tissue of two families of Penaeus vannamei can maintain ammonia-nitrogen balance by activating ammonia-nitrogen converting enzyme activity (GSase) and inhibiting the activity of ammonia-nitrogen production enzyme (TGase). 3. The integrated biomarker response (IBR) index of three enzymes related to ammonia-nitrogen metabolism was analyzed at three time points. IBR analysis showed that ammonia-nitrogen stress had the greatest effect on the activities of GSase and TGase in the muscle tissues of Penaeus vannamei, and the influence increased with the increase of ammonia-nitrogen concentration. The response time of family B to ammonia-nitrogen stress (T5 days) was significantly earlier than that of family A (5T10 days). It can be inferred that the B muscle tissue of the resistant family could take the lead in regulating the metabolism of ammonia nitrogen through the catalysis of ammonia-nitrogen metabolizing enzymes, especially accelerating the metabolic pathway of glutamate and NH4+ synthesis of glutamine. The results showed that hepatopancreas played a more important role in ammonia-nitrogen stress with the increase of ammonia-nitrogen concentration in the environment. Hepatopancreas was an important target tissue of ammonia-nitrogen stress. 4. The temporal and spatial variation of three ammonia-nitrogen metabolizing enzymes in response to ammonia-nitrogen stress (1) Muscles of different families Comparison of the expression patterns of ammonia-nitrogen metabolizing enzymes genes in meat tissues The expression of GDH-beta and GS genes in muscle tissues of the two families were significantly affected by ammonia-nitrogen concentrations (p0.05). Overall, the expression levels of the two genes were significantly increased with the prolongation of ammonia-nitrogen stress time and the increase of ammonia-nitrogen concentration. Family A (p0.05) showed that family B had a strong ability to mobilize ammonia-nitrogen transformation, which revealed the reasons for the difference of ammonia-nitrogen tolerance in different families. At the later stage of stress, the expression of TG gene in muscle tissue of the two families was significantly different: with the increase of ammonia-nitrogen concentration, TG gene in muscle of family A was significantly down-regulated, while that in muscle of family B was significantly down-regulated. The expression of GDH-beta, GS and TG genes in the hepatopancreas of the two families showed significant difference (p0.05). With the increase of ammonia concentration, the expression of the three genes in the hepatopancreas of the family A were significantly different. The expression of GDH-beta and GS genes in hepatopancreas of both families increased with the increase of ammonia nitrogen in the late stage of stress (5T10 days). In addition, the expression of TG gene showed the same downward trend. It indicated that hepatopancreas of B families with strong resistance could activate ammonia nitrogen metabolic group by increasing ammonia nitrogen concentration in the environment. This study not only enriched the basic biological knowledge of different families of Penaeus vannamei in response to ammonia nitrogen stress, but also laid a foundation for revealing the molecular mechanism of Penaeus vannamei in response to ammonia nitrogen stress and the cultivation of new strains of Penaeus vannamei resistant to ammonia nitrogen stress.
【学位授予单位】:海南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S917.4
【相似文献】
相关期刊论文 前10条
1 葛长字;;体重与氨氮浓度对河蚌氨氮排泄的影响[J];安徽农业科学;2010年04期
2 梁健;伍琴;王红权;金柏涛;唐德约;赵玉蓉;;氨氮对水产动物的影响[J];饲料广角;2014年02期
3 臧淑梅;;氨氮在水产养殖中的产生、危害及控制[J];黑龙江水产;2012年02期
4 孙勉英;扁藻降氨氮作用的试验[J];水产科学;1985年02期
5 吴秋仙;;蜂窝煤渣对氨氮吸附特性探讨[J];水产养殖;2014年01期
6 胡曰利,吴晓芙,聂发辉;天然蛭石对污水中氨氮吸附去除率的影响[J];中南林学院学报;2004年01期
7 符瞰;钟同畅;夏启斌;;吸附去除水产养殖中氨氮研究进展[J];安徽农业科学;2011年10期
8 赵丹;娄永江;;降低活鱼水体氨氮的技术[J];渔业科学进展;2012年04期
9 许典球;朱珍珍;;氨氮对鱼卵、鱼苗、夏花毒性的初步试验[J];湖南水产科技;1978年04期
10 张建柱;商平;刘涛利;;改性稻壳去除低浓度氨氮的研究[J];安徽农业科学;2011年01期
相关会议论文 前10条
1 施汉昌;;污水氨氮处理技术的现状与发展[A];中国水污染治理技术装备论文集(第十七期)[C];2011年
2 于秀娟;宁立红;肖予晨;;电化学阴阳极同时作用去除氨氮的研究[A];2013中国环境科学学会学术年会论文集(第八卷)[C];2013年
3 许春华;周琪;张建;;高效藻类塘去除氨氮机理的研究[A];中国化学会第七届水处理化学大会暨学术研讨会会议论文集[C];2004年
4 孙礼明;王浩明;童庆;;垃圾填埋场渗滤液氨氮去除试验研究[A];2007中国环境科学学会学术年会优秀论文集(上卷)[C];2007年
5 杨晓明;耿长君;苗磊;;高氨氮及高浓度难降解化工废水处理技术进展[A];中国化工学会2011年年会暨第四届全国石油和化工行业节能节水减排技术论坛论文集[C];2011年
6 宋超鹏;梁玉婷;易良银;;絮凝-包埋组合固定化去除低浓度氨氮的研究[A];2013中国环境科学学会学术年会论文集(第五卷)[C];2013年
7 陈欣然;牛翠娟;蒲丽君;井润贞;;慢性氨氮胁迫对中华鳖稚鳖生长及血液学指标的影响[A];中国动物学会两栖爬行动物学分会2005年学术研讨会暨会员代表大会论文集[C];2005年
8 孟伟;闫振广;刘征涛;王宏;余若祯;;基于风险的典型流域氨氮水质基准及标准探讨[A];中国毒理学会环境与生态毒理学专业委员会第二届学术研讨会暨中国环境科学学会环境标准与基准专业委员会2011年学术研讨会会议论文集[C];2011年
9 何立光;;合成氨厂氨氮排放水处理技术探讨[A];2002热烈庆祝全国化工给排水设计技术中心站成立四十周年技术交流会论文集[C];2002年
10 董姗燕;汪喜生;王文佳;许洲;姚重华;;UNITANK工艺氨氮浓度的动态特征[A];中国化学会第八届水处理化学大会暨学术研讨会论文集[C];2006年
相关重要报纸文章 前10条
1 本报记者 陈宏伟;难以忽视的氨氮[N];中国经济时报;2009年
2 本报记者 李东周;钒铬氨氮处理:治标又治本[N];中国化工报;2014年
3 环境保护部华东环境保护督查中心 朱风松;如何有效减排氨氮?[N];中国环境报;2011年
4 本报记者 徐琦;氨氮减排从哪里着手?[N];中国环境报;2011年
5 姜虹;氧化铁行业氨氮难题破解[N];中国化工报;2007年
6 本报记者 陈湘静;氨氮标准控制将重在执行[N];中国环境报;2009年
7 郑伟;生物法脱除废水氨氮技术可望应用[N];中国化工报;2008年
8 石磊;生物法脱除废水氨氮技术通过评议[N];医药经济报;2008年
9 本报记者 文晶;淮河,,又一声叹息[N];经济日报;2005年
10 ;淮河水质继续恶化 氨氮成为主要污染物[N];安徽经济报;2005年
相关博士学位论文 前8条
1 曹昕;铁锰复合氧化物催化氧化去除地下水中氨氮研究[D];西安建筑科技大学;2015年
2 康爱彬;三级串联人工快渗系统处理高氨氮生活污水[D];中国地质大学(北京);2010年
3 洪美玲;水中亚硝酸盐和氨氮对中华绒螯蟹幼体的毒性效应及维生素E的营养调节[D];华东师范大学;2007年
4 张肖静;基于MBR的全程自养脱氮工艺(CANON)性能及微生物特性研究[D];哈尔滨工业大学;2014年
5 高树梅;餐厨垃圾厌氧消化过程中氨氮耐受响应机制研究[D];江南大学;2015年
6 程庆锋;高铁锰氨氮地下水净化工艺优化及菌群结构研究[D];哈尔滨工业大学;2014年
7 郭英明;铁锰氧化膜催化氧化同步去除地下水中氨氮和锰的研究[D];西安建筑科技大学;2017年
8 左椒兰;真空/生物脱氮及对废水C/N值影响的研究[D];华中科技大学;2012年
相关硕士学位论文 前10条
1 马金玲;高氨氮、高盐制药废水生物脱氮高效菌株的筛选[D];河北大学;2015年
2 刘志云;氨氮降解菌的分离鉴定及其抑制鸡粪氨气挥发效果的研究[D];中国农业科学院;2015年
3 杨帅;离子型稀土矿开采过程中氨氮吸附解吸行为研究[D];中国地质大学(北京);2015年
4 曾鑫;MAP沉淀联合臭氧处理养猪场高浓度沼液的研究[D];西北农林科技大学;2015年
5 杨欢;基于平衡和非平衡模型的包气带土壤中氨氮运移过程研究[D];中国地质大学(北京);2015年
6 王园园;火电厂反渗透浓水电解除氨氮及制氯性能研究[D];长安大学;2015年
7 梁蓓;煤制氮肥厂废水氨氮预处理及回收研究[D];西安建筑科技大学;2015年
8 韩新盛;银川市贺兰山水厂氨氮处理工艺的研究[D];长安大学;2015年
9 刘广阳;粉末活性炭—膜生物反应器处理含铁、含锰、含氨氮地下水研究[D];哈尔滨工业大学;2015年
10 韩新明;基于氨氮强化去除的净水关键工艺单元运行优化[D];哈尔滨工业大学;2015年
本文编号:2229196
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2229196.html