口腔鳞状细胞癌中MALAT-1与CCR7及其相关基因相互作用的分子通路
[Abstract]:Oral squamous cell carcinoma (OSCC) is the most common type of oral malignancies, and is prone to early lymph node metastasis; the incidence is still growing every year. This paper focuses on the molecular pathway of lymph node metastasis in oral squamous cell carcinoma, the cell signaling pathway and the blockade of the key links, trying to find a new target for the diagnosis and treatment of oral squamous cell carcinoma. Carcinogenesis and metastasis is a complex process involving many factors, genes and links, among which there are complex gene regulatory factors. In recent years, studies have found that long non-coding RNA (lnc RNAs) plays an important role in cell development and metabolism, as well as in the occurrence and development of tumors. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) was the first to be found to be associated with tumor metastasis. Synthesized under the action of II, the expressed products are localized in nuclear speckles, and the serine/arginine rich protein family (SR protein, SR protein family) involved in the processing of M RNA precursors is also localized in nuclear speckles. Based on the co-localization relationship between the two proteins, a series of studies have found that MALAT-1 and SR protein phosphorylation. The localization of MALAT-1 in nuclear speckles is the structural basis for regulating the expression, localization and activation of SR protein family members. Studies have confirmed that MALAT-1 is closely related to microRNAs-320s. MALAT-1 can regulate the expression of downstream hsa-microRNAs-320a (a member of the hsa-microRNAs-320s family). Y-box binding protein 1 (YB-1) is a coding protein. YB-1 is a multifunctional cold shock protein that binds nucleic acids and is considered to be a tumor protein involved in many aspects of the proliferation and apoptosis of tumor cells. The data show that one of the target genes of chemokine receptor CCR7 may be hsa-microRNA-320a, and there is no empirical literature to support this aspect.Tumor cell migration has tissue-specific targeting.The molecular regulation of migration to specific tissues is similar to the infiltration and migration of immune cells in inflammatory reaction, and chemokines and chemokine receptors in tumors. Chemokines and chemokine receptors have been supported by many literatures. Chemokines and chemokine receptors have been shown to regulate lymph node metastasis of tumor cells, and chemokines like chemokines regulate immunity during inflammation. In summary, the following hypothesis is proposed: MALAT-1 regulates chemokine receptor m RNA precursor microRNA-320s processing by activating SR protein or YB-1 protein, affecting chemokine receptor CCR7. The research is divided into three parts: 1. Real-time fluorescence quantitative detection of oral squamous cell carcinoma tissue samples, qualitative observation of MALAT-1, microRNA-320s, SRSF1, YB-1, CCR7 and other molecular expression; 2, human tongue cancer cell lines SCC-9, SCC-25, at the cellular level, through immunization. Co-precipitation, Western blot assay was used to detect the correlation between RNA (MALAT-1, microRNAs-320s) and SRSF1 protein or YB-1; 3. MiNA inhibitor silenced microRNAs-320s was transfected by gene regulation technology, then co-precipitated by immunoblotting and real-time fluorescence quantitative detection of chemokine receptor CCR7 expression, and to analyze the possible correlation. The innovation of this study is that the interaction between long-stranded non-coding RNA MALAT-1 and chemokine receptor CCR7 was found in oral squamous cell carcinoma cell lines for the first time. The possible molecular pathways of MALAT-1 affecting CCR7 expression have not been reported in literature. [Methods] Part 1: Qualitative observation of the expression of MALAT-1, microRNA320s, SRSF1, YB-1, CCR7 in oral squamous cell carcinoma and adjacent tissues by real-time fluorescence quantitative detection. Six groups of oral squamous cell carcinoma (OSCC) tissues and adjacent tissues (T3/T4 stage) were harvested and placed in cryopreserved tubes. The specimens were divided into two groups with or without lymph node metastasis. 2. The expressions of MALAT1, SRSF1, microRNA-320s, YB-1 and CCR7 in OSCC and adjacent tissues were detected by real-time quantitative PCR. Difference.2.1 Total RNA.2.2 RNA was retrieved by TRIZOL and the expression of target molecule was detected by C DNA.2.3 Real-time Q PCR. Part 2: Correlation between the expression of related RNA (MALAT-1, microRNA-320s) and SRSF1 protein or YB-1 in tongue cancer cell lines 1. Human tongue squamous cell carcinoma cell lines (SCC9, SCC25) were subcultured in DMEM high glucose complete medium containing 10% fetal bovine serum at 37 C, 5% CO_2, 95% saturated humidity and passed to the sixth generation cells for use in this experiment. Protein-binding immunoprecipitation 2.1 experimental group (1) control group: adding negative control rabbit anti-RIP kit; (2) experimental group 1: adding anti-SF2 antibody RIP complex; (3) experimental group 2: adding anti-YB-1 antibody RIP complex; 2.2 experimental method using Sigma company's immunoprecipitation kit for RNA-binding protein immunoprecipitation 3. Immunoblotting assay was used to detect the expression of cell lysate products and RIP complex. Immunoblotting assay was used to detect the color bands of the target molecule whose lysis efficiency was the target molecule. Immunocoprecipitation assay was used to detect the complex expression. 4. Real-time fluorescence quantitative analysis. The concentration and purity of RNA-antibody-protein complex in PCR 4.1 immunoprecipitation assay were tested. Part 3: Gene regulation technique silenced microRNAs-320d. CCR7 expression was observed according to the second part of the experiment: hsa-microRNAs-320d (hsa-microRNAs-320s family members, screened a, b, d, e) and MALAT-1 has a correlation. 1. Cell microRNAs-320d inhibitor transfection 1.1 grouping (1) control group: MiRNA Inhibitor Negative Control #1 (control group: MiRNA Inhibitor Negative Control #1) 4464058; (2) Experimental group: MiRNA-320d inhibitor (4464066); 1. Real-time fluorescence quantitative PCR 3.1 transfected RIP complex purity, concentration detection; 3.2 RNA reverse transcription into C DNA; 3.3 Real-time Q PCR.4. Statistical analysis: Graphpad prism 7.0 on the obtained real-time fluorescence quantitative data Statistical analysis showed that there was significant difference between the two groups by paired t test and P < 0.05 as the standard. [Results] Part 1: Qualitative observation of MALAT-1, microRNA-320s, SRSF1, YB-1, CCR7 in oral squamous cell carcinoma and adjacent tissues by real-time fluorescence quantitative detection. The expression of microRNA-320d in the lymph node metastasis group was lower than that in the non-lymph node metastasis group. (P < 0.05) Part 2: Correlation between the expression of related RNA (MALAT-1, microNA-320s) and SRSF1 protein or YB-1 in tongue cancer cell lines. Study 1. MALAT-1 can bind to SRSF1. (See WB banding and real-time fluorescence quantitative analysis) 2. MiNA-320d (a member of the family of microNA-320s) can bind to SRSF1 (see WB banding and real-time fluorescence quantitative analysis) 3. MALAT-1, microNA-320d and YB-1 do not bind to each other. (See WB banding) The results showed that MALAT-1, microNA-320d through S-1. RSF1 was combined with each other. Part 3: Gene regulation technique silenced microRNAs-320d, observed CCR7 expression transfected silenced microRNAs-320d inhibited gene expression, and observed CCR7 expression increased, indicating that there was interaction between microRNAs-320d and CCR7. [Conclusion] 1. Qualitative observation of lymph node metastasis by real-time fluorescence quantitative detection. Histological LNC RNA MALAT-1, SRSF1, CCR7 were highly expressed in different degrees compared with the non-lymph node metastasis group. 2. Through immunoprecipitation, Western blotting test showed that the related RNA (MALAT-1, microRNA320d) could bind to each other through SRSF1 protein. 3. Real-time fluorescence assay was used to quantify the contents of MALAT-1, microRNA320s, MALAT-1 and microRNA320d in RNA-protein complexes. Through SRSF1 binding to each other; 4. Gene regulation technology silencing of microRNAs-320s, immunoprecipitation, Western blot and real-time fluorescence quantitative assay found that the expression of chemokine receptor CCR7 increased, we can infer that there is interaction between MALAT-1, SRSF1, microRNAs-320d, CCR7, reveal the effect of MALAT-1 on chemokine receptor CCR7 from the molecular level. MALAT-1 as a molecular targeted lymph node metastasis of oral squamous cell carcinoma related to the basis and application of further research to provide a theoretical basis.
【学位授予单位】:第二军医大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R739.8
【相似文献】
相关期刊论文 前10条
1 李羽安,郭传tx;口腔鳞状细胞癌患者患源性诊断延误相关因素的回顾性研究[J];现代口腔医学杂志;2003年04期
2 王新勇;口腔鳞状细胞癌18例病理分析[J];山东医药;2004年26期
3 王雷;高文信;马宁;;血管内皮生长因子在口腔鳞状细胞癌中的表达[J];实用口腔医学杂志;2008年03期
4 吴修胤;佟冬冬;张风河;;微小RNA与口腔鳞状细胞癌[J];生物医学工程研究;2011年01期
5 马开宇;马开阳;黎明;代晓明;李逸松;;基于形态学特征提取的人工神经网络在口腔鳞状细胞癌诊断中的应用[J];昆明医学院学报;2012年01期
6 祝慧慧;刘洋;周晶琳;;口腔鳞状细胞癌机制研究[J];微量元素与健康研究;2013年01期
7 杨成;新生血管在口腔鳞状细胞癌扩散中的作用[J];国外医学.口腔医学分册;1996年06期
8 简卫国,李凌,武培敬;表皮生长因子受体在口腔鳞状细胞癌中的表达及临床意义[J];临床口腔医学杂志;1998年01期
9 赵世禄;程福强;史繁华;;口腔鳞状细胞癌临床流行病学研究现状[J];中国保健营养;2013年07期
10 叶平,蒋泽先,张永福;口腔鳞状细胞癌不同区域P~(53)和P~(21)表达差异[J];实用临床医学;2001年04期
相关会议论文 前10条
1 高巍;郭传tx;;口腔鳞状细胞癌延误诊断相关因素的前瞻性研究[A];第四届中国肿瘤学术大会暨第五届海峡两岸肿瘤学术会议论文集[C];2006年
2 吴衍昌;李芳;;热休克蛋白60在口腔鳞状细胞癌中的表达及临床意义[A];第八次全国口腔颌面—头颈肿瘤会议论文汇编[C];2009年
3 张强;张永福;卓夏阳;贾云香;;口腔鳞状细胞癌不同区域病理分级及增殖活性的差异[A];第一届全国口腔颌面部肿瘤学术会议论文汇编[C];2001年
4 僗承翰;林美灄;戴鑓;_5正琪;;发展奈米金结合传统化疗药物以抑制口腔鳞状细胞癌之协同疗法(英文)[A];2013第七届海峡两岸毒理学研讨会大会手册[C];2013年
5 吴洪儒;刘晓勇;王凤光;汪育苗;;口腔鳞状细胞癌淋巴结转移危险因素的Logistic回归分析[A];中华口腔医学会第七届全国口腔病理学术会议论文摘要汇编[C];2006年
6 刘晓勇;吴洪儒;汪育苗;王凤光;;口腔鳞状细胞癌淋巴结转移相关因素的单因素分析[A];中华口腔医学会第七届全国口腔病理学术会议论文摘要汇编[C];2006年
7 李明贺;张茹慧;吴国民;;CD44 podoplanin在口腔鳞状细胞癌中的表达及其意义[A];第八次全国口腔颌面—头颈肿瘤会议论文汇编[C];2009年
8 张晔;郭传tx;俞光岩;;口腔鳞状细胞癌脂肪酸代谢的初步研究[A];第一届全国口腔颌面部肿瘤学术会议论文汇编[C];2001年
9 郭传tx;李羽安;高岩;;口腔鳞状细胞癌颈淋巴转移特征再探讨[A];海峡两岸2008口腔癌诊治与修复重建新进展研讨会论文集[C];2008年
10 张伟伟;熊学鹏;何三纲;张文峰;;≤40岁年轻女性口腔鳞状细胞癌的临床特点分析[A];第八次全国口腔颌面—头颈肿瘤会议论文汇编[C];2009年
相关重要报纸文章 前1条
1 衣晓峰 乔蕤琳;哈医大二院揭示口腔鳞状细胞癌发生机理[N];中国医药报;2007年
相关博士学位论文 前10条
1 赖金火;Id1和NF-κB亚单位p65在口腔鳞状细胞癌发病机制中的协同作用研究[D];福建医科大学;2014年
2 郑建伟;口腔鳞状细胞癌差异基因的筛选验证及相互作用的生物信息学分析[D];南方医科大学;2015年
3 李怡宁;HIF-1α抑制剂PX-478在自噬介导的口腔鳞状细胞癌糖基化中的研究[D];浙江大学;2016年
4 李文鹿;Bit-1在口腔鳞状细胞癌侵袭、转移及凋亡中作用的初步研究[D];郑州大学;2016年
5 李晓晖;COX-2通路中PGE2-EP4对口腔鳞状细胞癌生物学特性的作用及机制[D];南方医科大学;2017年
6 崔婧;口腔鳞状细胞癌的生物信息学分析[D];山东大学;2014年
7 孙晓菊;环氧合酶-2与口腔鳞状细胞癌关系的初步研究[D];中国医科大学;2005年
8 吴国民;口腔鳞状细胞癌肿瘤干细胞的分选和鉴定[D];吉林大学;2011年
9 董作青;Id-1基因沉默抑制口腔鳞状细胞癌生长转移的研究[D];山东大学;2010年
10 张晓英;Gadd45a在口腔鳞状细胞癌预后及治疗中的作用研究[D];山东大学;2011年
相关硕士学位论文 前10条
1 刘玺章;P-gp、HIF-1α在口腔鳞状细胞癌癌组织中的表达和临床意义[D];广西医科大学;2015年
2 马贲;HPV感染对口腔鳞状细胞癌朗格汉斯细胞数量的影响[D];佳木斯大学;2015年
3 储伟明;Neuropilin-1诱导口腔鳞状细胞癌上皮间充质转化及其机制的研究[D];南京医科大学;2015年
4 李姣;YAP、p53蛋白在口腔鳞状细胞癌中的表达及其与细胞凋亡间相互关系[D];山西医科大学;2016年
5 高前嵩;环氧合酶-2在口腔鳞状细胞癌发生过程中的表达和意义[D];安徽医科大学;2016年
6 王润;口腔鳞状细胞癌及癌前病变中钾离子通道Kv3.4的表达研究[D];安徽医科大学;2016年
7 宁毅;Transformer 2β、RGS16蛋白在口腔鳞状细胞癌中的表达[D];山西医科大学;2016年
8 马猛;谷胱甘肽在口腔鳞状细胞癌Cal-27细胞系ROS抗化疗机制中作用的研究[D];山东大学;2016年
9 李瑾;Beclin1、LC3和P62在口腔鳞状细胞癌中的表达及临床意义[D];郑州大学;2016年
10 万潇潇;PIK3CA基因表达及SNPs在口腔鳞状细胞癌发生发展中的意义[D];重庆医科大学;2016年
,本文编号:2241332
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2241332.html