微博转基因舆情的社会网络分析
[Abstract]:With the advent of the Internet era, network public opinion has become a barometer of social sentiment and public opinion. As one of the most popular online social platforms in recent years, Weibo has not only become a platform for information communication and knowledge sharing among Internet users because of its advantages of timeliness of communication, autonomy of content, and friendliness of interaction, etc. And to develop into the network of public opinion distribution center. Among them, "transgenic" has been one of the hot topics on Weibo. Transgenic technology as a new technology, new industry, itself has a very broad development prospects. Seizing the commanding height of GM technology is also one of our country's science and technology development strategies. However, the research and popularization of transgenic field in China is limited by many factors, the most prominent of which is the public's doubts about the safety of GM. Many netizens take part in the discussion of genetically modified genes through Weibo, and the public sentiment of the transgenic gene on Weibo is in full swing now, so it is of certain significance to explore the transgenic public opinion of Weibo. This article first combs the network public opinion and Weibo public opinion related literature, compares the domestic and foreign research progress and the characteristic, and then puts forward several theoretical exploration: (1) does Weibo communication accord with the complex social network characteristic, (2) can social network analysis method reflect the characteristics of Weibo's public opinion; (3) can social network analysis method reveal the evolution of Weibo's public opinion; Then take the transgenic network public opinion as an example, analyzes its present situation and the characteristic, then uses the network reptile to carry on the data mining to the Sina Weibo contain "transgenic" Weibo, gathers from August 2009 to the end of 2014 2700348 contains "genetically modified" Weibo; Then, according to the Weibo user data, the forwarding relationship network is constructed, in which 363640 Weibo users participate in the "transgenic" forwarding, and the overall network analysis of the forwarding relationship network is carried out through Pajek. Individual network analysis and aggregation subgroup analysis, combined with the number of followers of opinion leaders, Weibo's number of retweets and daily activity, as well as their Weibo authentication identity and attitude towards GM, as well as developments and changes at different time nodes. Further analysis of their influence and appeal in the process of GMO public opinion transmission; Finally, it summarizes the usability of social network analysis method in Weibo public opinion dissemination according to empirical research. This paper uses the social network analysis method to analyze Weibo transgenic public opinion, based on the dynamic research perspective, through the extraction of Weibo opinion leaders, Finally, the following conclusions are drawn: (1) the dissemination of public opinion of Weibo accords with the small-world and scale-free characteristics of complex social networks; (2) the social network analysis method can reflect the characteristics of Weibo's public opinion dissemination, (3) the social network analysis method can reveal the evolution of Weibo's public opinion. From this, we can see that in the process of spreading Weibo's public opinion, not only can the opinion leaders be identified by constructing the user's forwarding relationship network, but also by using the social network analysis indexes. They can also be found in recent years in the spread of genetically modified public opinion in the process of development.
【学位授予单位】:南京农业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:G206
【参考文献】
相关期刊论文 前10条
1 何建民;李雪;;面向微博舆情演化分析的隐马尔科夫模型研究[J];情报科学;2016年04期
2 翁士洪;张云;;公共议程设置中微博舆情互动的社会网络分析[J];武汉大学学报(人文科学版);2016年01期
3 高杰;杨剑;;论网络舆情危机管理视域下政府形象的构建——基于官员形象的反面案例分析[J];党政干部论坛;2016年01期
4 杜杨沁;;政务微博整体网络的关系解剖[J];现代情报;2015年09期
5 全燕;;行走在“科学精神”和“社会契约”间的转基因风险传播[J];新闻界;2015年16期
6 苏创;彭锦;李圣国;;基于不确定微分方程的网络舆情传播模型研究[J];系统工程理论与实践;2015年12期
7 ;两会:转基因研究的“国家态度”引热议[J];种业导刊;2015年04期
8 王晰巍;邢云菲;赵丹;李嘉兴;;基于社会网络分析的移动环境下网络舆情信息传播研究——以新浪微博“雾霾”话题为例[J];图书情报工作;2015年07期
9 杨辉;尚智丛;;微博科学传播机制的社会网络分析——以转基因食品议题为例[J];科学学研究;2015年03期
10 朱毅华;张超群;;基于影响模型的网络舆情演化与传播仿真研究[J];情报杂志;2015年02期
相关博士学位论文 前4条
1 方洁;微博舆情利益相关者的分类及行为动因研究[D];南京大学;2014年
2 丁兆云;面向微博舆情的影响力分析关键技术研究[D];国防科学技术大学;2013年
3 万源;基于语义统计分析的网络舆情挖掘技术研究[D];武汉理工大学;2012年
4 王宇红;我国转基因食品安全政府规制研究[D];西北农林科技大学;2012年
相关硕士学位论文 前10条
1 米昂;结合影响力分析的微博舆情溯源研究[D];北京交通大学;2015年
2 丁洁;基于社会网络的网络舆情演化研究[D];南京理工大学;2015年
3 张东杰;名人微博舆论的传播机制及其可视化研究[D];哈尔滨工业大学;2014年
4 孙荣德;基于复合网的微博用户行为特征研究[D];青岛大学;2014年
5 王爱玲;反腐类微博舆情热点演化机制研究[D];山东大学;2014年
6 余琪;政务微博中政府信息公开的效果评价研究[D];华中师范大学;2014年
7 孙海燕;网络舆情传播模型研究[D];山东大学;2014年
8 彭利斌;微博热点话题发现与话题演化的研究[D];桂林电子科技大学;2014年
9 任士伟;政府应对网络舆情的路径研究[D];苏州大学;2014年
10 顾淑雯;基于社会网络视角下的机构投资者对公司治理效率的影响[D];上海交通大学;2014年
,本文编号:2411986
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2411986.html