前馈型基因调控网络中噪声的传播机制研究
[Abstract]:Biological system is dominated by randomness and certainty. Fluctuations and noise have penetrated into all levels of biological system. More and more evidence shows that the expression of noise plays an important role in many biological processes. As a typical form of gene module, the structure, function and dynamics of feedforward gene regulatory network motif have attracted more and more attention in recent ten years. A large number of experiments show that the number of molecules involved in biochemical reactions in life activities is relatively small, the fluctuations and noise are very obvious, and the effects of different network motifs on noise are also different. Therefore, the relationship between noise and feedforward loop structure in biochemical system is studied, the source of noise is traced back, their roles in feedforward adjustment path are understood, and the mechanism and general principle of noise propagation in feedforward loop are expounded. It is one of the important contents of quantitative biology research at present. In this paper, aiming at the dynamic model of feedforward gene regulatory network, the random dynamic properties and noise propagation mechanism of feedforward gene regulatory network are deeply analyzed by using random dynamics method and computer simulation technology. The following results have been obtained: (1) taking the consistent feedforward transcriptional regulatory loop as the research object, the propagation characteristics and noise decomposition principle of random noise in feedforward gene regulatory networks are obtained. Firstly, based on the dynamic model of consistent feedforward gene transcriptional regulatory network, the feedforward gene transcriptional regulatory loop is decomposed into two parts: the main circuit and the branch, and the chemical master equation satisfied by the joint probability distribution is written. The fluctuation-dissipation formula is obtained by using linear noise approximation, and the variance and covariance which can describe the statistical properties of random variables are obtained. Then, with the help of the concept of logarithmic gain function, the fluctuation-dissipation formula is standardized, and the theoretical expressions of the total noise of the whole loop, the noise of the main circuit and the noise of the branch are derived analytically. Finally, the theoretical results are verified by random simulation. We find that compared with the noise of the main circuit and the branch, the full model of the feedforward ring can effectively reduce the output noise level. There is a conversion point in the system. When the system is below the conversion point, the noise of the main road is dominant, and the noise of the branch road is dominant when the conversion point is above the conversion point. We take a very simple signal transduction module as an example to reveal how noise is generated and transmitted. The noise decomposition principle of consistent feedforward gene regulatory networks is clarified. (2) the output noise characteristics and propagation mechanism of various feedforward transcriptional regulatory circuits, including "and gate", are further studied. Consistent and inconsistent feedforward rings in the case of "OR gate". By introducing logarithmic gain coefficient, the theoretical formula of noise decomposition is derived by using linear noise approximation method, and the theoretical results are verified by random simulation. According to the theory and simulation results of noise decomposition algorithm, the nonlinear behavior of modal noise transmission in feedforward gene network is analyzed, and three general conclusions are obtained: first, The second-order noise propagation of the upstream factor of the "gate" inconsistent feedforward loop is negative, that is to say, the upstream factor can indirectly suppress the noise of the downstream factor. Secondly, the first-order propagation of the upstream factor of the "OR gate" consistent feedforward ring is non-monotonous, so the upstream factor is nonlinear to the direct control of the downstream factor noise. Finally, when the branch in the feedforward ring is negatively regulated, the total noise of the downstream factor increases monotonously. We summarize the general noise characteristics and propagation mechanism of feedforward control networks, which provides a preliminary result for revealing the role of noise in function and evolution.
【学位授予单位】:华中师范大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:Q811.4
【相似文献】
相关期刊论文 前10条
1 易东,杨梦苏,李辉智,黄明辉,王文昌;相关分析在建立基因调控网络中的应用[J];中国卫生统计;2003年03期
2 张家军;蔡传政;王翼飞;;基因调控网络中的延滞动力学[J];应用科学学报;2007年01期
3 郭子龙;纪兆华;涂华伟;梁艳春;;基因调控网络的研究内容及其数据分析方法[J];电脑知识与技术;2008年15期
4 陈少白;罗嘉;;一类基因调控网络的定性分析[J];南京信息工程大学学报(自然科学版);2010年05期
5 李庆伟;全俊龙;刘欣;;基因调控网络研究进展[J];辽宁师范大学学报(自然科学版);2013年01期
6 叶纬明;吕彬彬;赵琛;狄增如;;少节点基因调控网络的控制[J];物理学报;2013年01期
7 王沛;吕金虎;;基因调控网络的控制:机遇与挑战[J];自动化学报;2013年12期
8 易东,李辉智;基因调控网络研究与数学模型的建立[J];中国现代医学杂志;2003年24期
9 雷耀山,史定华,王翼飞;基因调控网络的生物信息学研究[J];自然杂志;2004年01期
10 姜伟;李霞;郭政;李传星;王丽虹;饶绍奇;;时间延迟基因调控网络重构的决策树方法研究[J];中国科学(C辑:生命科学);2005年06期
相关会议论文 前6条
1 熊江辉;李莹辉;;基因芯片数据分析的新方法与基因调控网络推理[A];全面建设小康社会:中国科技工作者的历史责任——中国科协2003年学术年会论文集(上)[C];2003年
2 王亚丽;周彤;;大规模基因调控网络因果关系的辨识[A];第二十九届中国控制会议论文集[C];2010年
3 冯晶;许勇;李娟娟;;非高斯噪声激励下基因调控网络的研究[A];第十四届全国非线性振动暨第十一届全国非线性动力学和运动稳定性学术会议摘要集与会议议程[C];2013年
4 赵伟;;新媒体与日常生活实践研究——以“\L丝”一词的传播机制与社会心理研究为例[A];第三届华中地区新闻与传播学科研究生学术论坛获奖论文[C];2012年
5 杨静;;略论“舆论倒逼”传播机制与路径[A];媒介化社会的社会文明建构——第四届“华中地区研究生新闻传播学术论坛”优秀论文集[C];2013年
6 张宝龙;倪四道;夏英杰;周勇;;用数值方法研究T波产生及传播机制[A];2014年中国地球科学联合学术年会——专题12:强震机理、孕育环境与地震活动性分析论文集[C];2014年
相关重要报纸文章 前2条
1 通讯员 刘颖;哈尔滨:建立气象预警信息快速传播机制[N];中国气象报;2013年
2 衣晓峰 刘思国 张艳禾;猪源大肠杆菌耐药基因分子传播机制被揭示[N];中国医药报;2014年
相关博士学位论文 前10条
1 桂容;前馈型基因调控网络中噪声的传播机制研究[D];华中师范大学;2017年
2 王毅;一类基因调控网络的动力学研究[D];上海大学;2009年
3 张律文;基因调控网络的数值研究[D];上海大学;2010年
4 艾对元;几种基因调控网络的比较[D];兰州大学;2008年
5 凌光;基因调控网络的动态演化特性分析与控制[D];华中科技大学;2016年
6 徐红林;基因调控网络的建模及其结构分解方法研究[D];江南大学;2010年
7 王政霞;时滞基因调控网络的稳定性研究[D];重庆大学;2009年
8 缑葵香;基于贝叶斯理论的基因调控网络建模研究[D];天津大学;2010年
9 刘辉;基因调控网络的建模与学习研究[D];复旦大学;2009年
10 沈威;基于微分方程模型构建基因调控网络的研究[D];吉林大学;2012年
相关硕士学位论文 前10条
1 何东;基于多信息融合建立基因调控网络[D];华中科技大学;2007年
2 葛玲玲;基于动态贝叶斯模型的基因调控网络构建方法研究[D];合肥工业大学;2010年
3 张如贝;基于微分方程模型的基因调控网络稳定性分析[D];南京信息工程大学;2011年
4 朱云涛;在内部参数波动和外部噪声干扰下的基因调控网络鲁棒控制器的设计[D];山东科技大学;2010年
5 罗嘉;一类基因调控网络的定性分析[D];武汉科技大学;2010年
6 王拓;基因调控网络的线性回归模型及其鲁棒性分析[D];西安电子科技大学;2012年
7 于阿会;基于微分方程模型的基因调控网络的稳定性分析[D];黑龙江大学;2013年
8 于雄香;基因调控网络的函数泛化及干预研究[D];温州大学;2015年
9 徐德文;DNA调控网络分析与数字化表征[D];河北工业大学;2015年
10 邹佳华;含混合时滞基因调控网络的稳定性分析[D];黑龙江大学;2015年
,本文编号:2483374
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/2483374.html